1 resultado para deposition temperature
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Angesichts der sich abzeichnenden Erschöpfung fossiler Ressourcen ist die Erforschung alternativer Energiequellen derzeit eines der meistbeachteten Forschungsgebiete. Durch ihr enormes Potential ist die Photovoltaik besonders im Fokus der Wissenschaft. Um großflächige Beschichtungsverfahren nutzen zu können, wird seit einigen Jahren auf dem Gebiet der Dünnschichtphotovoltaik intensiv geforscht. Jedoch sind die gegenwärtigen Solarzellenkonzepte allesamt durch die Verwendung giftiger (Cd, As) oder seltener Elemente (In, Ga) oder durch eine komplexe Phasenbildung in ihrem Potential beschränkt. Die Entwicklung alternativer Konzepte erscheint daher naheliegend.rnAufgrund dessen wurde in einem BMBF-geförderten Verbundprojekt die Abscheidung von Dünnschichten des binären Halbleiters Bi2S3 mittels physikalischer Gasphasenabscheidung mit dem Ziel der Etablierung als quasi-intrinsischer Absorber in Solarzellenstrukturen mit p-i-n-Schichtfolge hin untersucht.rnDurch sein von einem hochgradig anisotropen Bindungscharakter geprägtes Kristallwachstum war die Abscheidung glatter, einphasiger und für die Integration in eine Multischichtstruktur geeigneter Schichten mit Schichtdicken von einigen 100 nm eine der wichtigsten Herausforderungen. Die Auswirkungen der beiden Parameter Abscheidungstemperatur und Stöchiometrie wurden hinsichtlich ihrer Auswirkungen auf die relevanten Kenngrößen (wie Morphologie, Dotierungsdichte und Photolumineszenz) untersucht. Es gelang, erfolgreich polykristalline Schichten mit geeigneter Rauigkeit und einer Dotierungsdichte von n ≈ 2 1015cm-3 auf anwendungsrelevanten Substraten abzuscheiden, wobei eine besonders starke Abhängigkeit von der Gasphasenzusammensetzung ermittelt werden. Es konnten weiterhin die ersten Messungen der elektronischen Zustandsdichte unter Verwendung von Hochenergie-Photoemissionsspektroskopie durchgeführt werden, die insbesondere den Einfluss variabler Materialzusammensetzungen offenbarten.rnZum Nachweis der Eignung des Materials als Absorberschicht standen innerhalb des Projektes mit SnS, Cu2O und PbS prinzipiell geeignete p-Kontaktmaterialien zur Verfügung. Es konnten trotz der Verwendung besonders sauberer Abscheidungsmethoden im Vakuum keine funktionstüchtigen Solarzellen mit Bi2S3 deponiert werden. Jedoch war es unter Verwendung von Photoemissionspektroskopie möglich, die relevanten Grenzflächen zu spektroskopieren und die Ursachen für die Beobachtungen zu identifizieren. Zudem konnte erfolgreich die Notwendigkeit von Puffermaterialien bei der Bi2S3-Abscheidung nachgewiesen werden, um Oberflächenreaktionen zu unterbinden und die Transporteigenschaften an der Grenzfläche zu verbessern.rn