3 resultados para cycle-based formulations
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Die Untersuchung der Adhäsionskräfte mit Colloid Probe Technik, einer Weiterentwicklung der Rasterkraftmikroskopie (Atomic Force Microscopy=AFM), an erzeugten Carrier- und Wirkstoffkristallen bei Laborbedingungen und unter Einfluss der Luftfeuchte zeigte, dass die Adhäsion von Tiotropiumbromid Monohydrat an Mannitol deutlich höher ist als an Lactose Monohydrat. Die Kohäsionskräfte des Wirkstoffes sind stärker als die Adhäsionskräfte an Carriermaterialien. Auf dieser Grundlage wurde die Hypothese aufgestellt, dass eine Mischung mit Mannitol als Carrier eine kleinere Feinpartikeldosis liefert als eine Mischung mit Lactose. Diese Theorie wurde an interaktiven Pulvermischungen unter Variation von verschiedenen Einflussfaktoren überprüft. Die binare und ternäre Lactose-basierte Mischung lieferte unabhängig vom Kapselmaterial (Gelatine- und Polyethylenkapsel) eine höhere Feinpartikeldosis als die entsprechenden Mannitol-basierten Formulierungen. Die ternäre Komponente bewirkte nur bei Mannitol-basierten Mischungen eine Verbesserung der Feinpartikeldosis. Die detaillierte Untersuchung der aerodynamischen Verteilung ternärer Mischungen zeigte, dass das Kapselmaterial nur unter dem Einfluss der Luftfeuchte und Permeabilität der Blisterverpackung die interpartikulären Wechselwirkungen beeinflusst. Mischungen mit Mannitol als Carrier lieferten unabhängig vom Kapselmaterial, von Luftfeuchte/Lagerungsbedingungen und Permeabilität der Blisterverpackung eine kleinere Feinpartikeldosis als Mischungen mit Lactose als Carrier. Die Carrierart, die Permeabilität der Blisterverpackung und die Luftfeuchte wurden als Haupteinflussfaktoren auf die aerodynamischen Eigenschaften identifiziert. Es konnte gezeigt werden, dass AFM einen wertvollen Beitrag zum Verständnis der interpartikulären Wechselwirkungen leistet und aufgrund prädiktiver Eigenschaften hilfreich in der Entwicklung inhalativer Darreichungs-formen sein kann.
Resumo:
The aim of this thesis was to apply the techniques of the atomic force microscope (AFM) to biological samples, namely lipid-based systems. To this end several systems with biological relevance based on self-assembly, such as a solid-supported membrane (SSM) based sensor for transport proteins, a bilayer of the natural lipid extract from an archaebacterium, and synaptic vesicles, were investigated by the AFM. For the characterization of transport proteins with SSM-sensors proteoliposomes are adsorbed that contain the analyte (transport protein). However the forces governing bilayer-bilayer interactions in solution should be repulsive under physiological conditions. I investigated the nature of the interaction forces with AFM force spectroscopy by mimicking the adsorbing proteoliposome with a cantilever tip, which was functionalized with charged alkane thiols. The nature of the interaction is indeed repulsive, but the lipid layers assemble in stacks on the SSM, which expose their unfavourable edges to the medium. I propose a model by which the proteoliposomes interact with these edges and fuse with the bilayer stacks, so forming a uniform layer on the SSM. Furthermore I characterized freestanding bilayers from a synthetic phospholipid with a phase transition at 41°C and from a natural lipid extract of the archaebacterium Methanococcus jannaschii. The synthetic lipid is in the gel-phase at room temperature and changes to the fluid phase when heated to 50°C. The bilayer of the lipid extract shows no phase transition when heated from room temperature to the growth temperature (~ 50°C) of the archeon. Synaptic vesicles are the containers of neurotransmitter in nerve cells and the synapsins are a family of extrinsic membrane proteins, that are associated with them, and believed to control the synaptic vesicle cycle. I used AFM imaging and force spectroscopy together with dynamic light scattering to investigate the influence of synapsin I on synaptic vesicles. To this end I used native, untreated synaptic vesicles and compared them to synapsin-depleted synaptic vesicles. Synapsin-depleted vesicles were larger in size and showed a higher tendency to aggregate compared to native vesicles, although their mechanical properties were alike. I also measured the aggregation kinetics of synaptic vesicles induced by synapsin I and found that the addition of synapsin I promotes a rapid aggregation of synaptic vesicles. The data indicate that synapsin I affects the stability and the aggregation state of synaptic vesicles, and confirm the physiological role of synapsins in the assembly and regulation of synaptic vesicle pools within nerve cells.
Resumo:
This work aims at developing a transcutaneous immunization (TCI) approach in order to activate cytotoxic T-cells. A tumor specific immune response was therefore generated by the TLR7-Agonist imiquimod. Five commercially available creams including the innovators product Aldara® 5% creme were assessed to ascertain their capability to induce an immune response in C57BL/6 mice after dermal administration. Moreover, creams were investigated regarding their imiquimod permeation in a Franz-diffusion cell model. Results obtained from this study were used to develop novel formulation approaches based on dissolved state imiquimod in a submicron scale range. High pressure homogenization ensured emulsification as well as particle size reduction. A freeze dried spreadable solid nanoemulsion based on sucrose fatty acid esters and oil components represented a major formulation approach. Within the scope of this approach the influence of pharmaceutical oils i.e. middle chain triglycerides, avocado oil, jojoba wax, and squalen was assessed towards their TCI performance. Furthermore, an aqueous jojoba wax based emulsion gel was developed. Unlike the innovators product, all formulations demonstrated a distinctly reduced imiquimod permeation across murine skin, a fact particularly evident in case of jojoba wax. Squalen significantly augmented in vivo immune response (p≤0.05 Mann-Whitney-Test). The emulsion gel demonstrated a 10fold decrease of imiquimod permeation. In comparison with the innovators product, the emulsion gel induced an equal immune response with a simultaneously enhanced tumor rejection in a mouse model.