3 resultados para compact array
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Es wurde ein genomischer DNA-Array der Modellpflanze Arabidopsis thaliana mit einer 13.800 EST-Klone umfassenden cDNA-Bibliothek entwickelt und in der Genexpressionsanalyse der pflanzlichen Pathogenabwehr eingesetzt. Mittels PCR-Amplifikation sind 13.000 PCR-Produkte der cDNA-Fragmente hergestellt worden, mit denen 66 genomische Arabidopsis-Arrays auf Nylon und Polypropylen als Trägermaterial hergestellt werden konnten. Die Validierung mit Fluoreszenz- und Radiaktivhybridisierung sowie der Vergleich von drei Normalisierungsmethoden führte zu reproduzierbaren Ergebnissen bei hohem Korrelationskoeffizienten. Die etablierte DNA-Array-Technologie wurde zur Genexpressionsanalyse der pathogeninduzierten Abwehrmechanismen der Pflanze Arabidopsis thaliana in den ersten 24 Stunden nach Infektion mit dem avirulenten Bakterium Pseudomonas syringae pv. tomato eingesetzt. In einer Auswahl von 75 Genen der Stoffwechselwege Glycolyse, Citrat-Cyclus, Pentosephosphat-Cyclus und Glyoxylatmetabolismus konnte für 25 % der Gene, im Shikimat-, Tryptophan- und Phenylpropanoidsyntheseweg für 60 % der Gene eine erhöhte Transkriptionsrate nachgewiesen werden. Die Ergebnisse dieser Arbeit stimmen mit experimentellen Daten verschiedener unabhängiger Studien zur pflanzlichen Pathogenantwort überein. Darüberhinaus sind erstmals Transkriptionsprofile von bisher auf Transkriptionsebene nicht untersuchten Genen erstellt worden. Diese Ergebnisse bestätigen die transkriptionelle Aktivierung ganzer Stoffwechselwege und gewähren erstmals einen Einblick in die koordinierte differentielle Transkription ganzer Stoffwechselwege während der Pathogenabwehr.
Resumo:
The present thesis is a contribution to the theory of algebras of pseudodifferential operators on singular settings. In particular, we focus on the $b$-calculus and the calculus on conformally compact spaces in the sense of Mazzeo and Melrose in connection with the notion of spectral invariant transmission operator algebras. We summarize results given by Gramsch et. al. on the construction of $Psi_0$-and $Psi*$-algebras and the corresponding scales of generalized Sobolev spaces using commutators of certain closed operators and derivations. In the case of a manifold with corners $Z$ we construct a $Psi*$-completion $A_b(Z,{}^bOmega^{1/2})$ of the algebra of zero order $b$-pseudodifferential operators $Psi_{b,cl}(Z, {}^bOmega^{1/2})$ in the corresponding $C*$-closure $B(Z,{}^bOmega^{12})hookrightarrow L(L^2(Z,{}^bOmega^{1/2}))$. The construction will also provide that localised to the (smooth) interior of Z the operators in the $A_b(Z, {}^bOmega^{1/2})$ can be represented as ordinary pseudodifferential operators. In connection with the notion of solvable $C*$-algebras - introduced by Dynin - we calculate the length of the $C*$-closure of $Psi_{b,cl}^0(F,{}^bOmega^{1/2},R^{E(F)})$ in $B(F,{}^bOmega^{1/2}),R^{E(F)})$ by localizing $B(Z, {}^bOmega^{1/2})$ along the boundary face $F$ using the (extended) indical familiy $I^B_{FZ}$. Moreover, we discuss how one can localise a certain solving ideal chain of $B(Z, {}^bOmega^{1/2})$ in neighbourhoods $U_p$ of arbitrary points $pin Z$. This localisation process will recover the singular structure of $U_p$; further, the induced length function $l_p$ is shown to be upper semi-continuous. We give construction methods for $Psi*$- and $C*$-algebras admitting only infinite long solving ideal chains. These algebras will first be realized as unconnected direct sums of (solvable) $C*$-algebras and then refined such that the resulting algebras have arcwise connected spaces of one dimensional representations. In addition, we recall the notion of transmission algebras on manifolds with corners $(Z_i)_{iin N}$ following an idea of Ali Mehmeti, Gramsch et. al. Thereby, we connect the underlying $C^infty$-function spaces using point evaluations in the smooth parts of the $Z_i$ and use generalized Laplacians to generate an appropriate scale of Sobolev spaces. Moreover, it is possible to associate generalized (solving) ideal chains to these algebras, such that to every $ninN$ there exists an ideal chain of length $n$ within the algebra. Finally, we discuss the $K$-theory for algebras of pseudodifferential operators on conformally compact manifolds $X$ and give an index theorem for these operators. In addition, we prove that the Dirac-operator associated to the metric of a conformally compact manifold $X$ is not a Fredholm operator.
Resumo:
As the elastic response of cell membranes to mechanical stimuli plays a key role in various cellular processes, novel biophysical strategies to quantify the elasticity of native membranes under physiological conditions at a nanometer scale are gaining interest. In order to investigate the elastic response of apical membranes, elasticity maps of native membrane sheets, isolated from MDCK II (Madine Darby Canine kidney strain II) epithelial cells, were recorded by local indentation with an Atomic Force Microscope (AFM). To exclude the underlying substrate effect on membrane indentation, a highly ordered gold coated porous array with a pore diameter of 1.2 μm was used to support apical membranes. Overlays of fluorescence and AFM images show that intact apical membrane sheets are attached to poly-D-lysine coated porous substrate. Force indentation measurements reveal an extremely soft elastic membrane response if it is indented at the center of the pore in comparison to a hard repulsion on the adjacent rim used to define the exact contact point. A linear dependency of force versus indentation (-dF/dh) up to 100 nm penetration depth enabled us to define an apparent membrane spring constant (kapp) as the slope of a linear fit with a stiffness value of for native apical membrane in PBS. A correlation between fluorescence intensity and kapp is also reported. Time dependent hysteresis observed with native membranes is explained by a viscoelastic solid model of a spring connected to a Kelvin-Voight solid with a time constant of 0.04 s. No hysteresis was reported with chemically fixated membranes. A combined linear and non linear elastic response is suggested to relate the experimental data of force indentation curves to the elastic modulus and the membrane thickness. Membrane bending is the dominant contributor to linear elastic indentation at low loads, whereas stretching is the dominant contributor for non linear elastic response at higher loads. The membrane elastic response was controlled either by stiffening with chemical fixatives or by softening with F-actin disrupters. Overall, the presented setup is ideally suitable to study the interactions of the apical membrane with the underlying cytoskeleton by means of force indentation elasticity maps combined with fluorescence imaging.