2 resultados para chlorophyll content
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Das WSCP (water-soluble chlorophyll protein) der Brassicaceen ist das einzig bekannte Chlorophyll-bindende Protein, welches keine Carotinoide bindet. Es ist ein wasserlösliches, ca. 80 kDa großes Homotetramer mit 1-4 gebundenen Chlorophyllen. Das Protein ist äußerst stabil und vermag die gebundenen Chlorophylle vor Photooxidation zu schützen. Seine Funktion in der Pflanze ist bis heute ein Rätsel und sollte in dieser Arbeit zusammen mit seinen biochemischen Eigenschaften weiter aufgeklärt werden. Es wurden Versuche durchgeführt mit nativem und rekombinantem WSCP aus Blumenkohl (BoWSCP bzw. BoWSCPhis) und aus Arabidopsis thaliana (AtWSCP bzw. AtWSCPhis). Die Expressionsausbeute von BoWSCPhis konnte verbessert werden und zusätzlich wurde die Rekonstitutionsmethode für das rekombinante WSCP optimiert, sodass das pigmentierte Protein mit hoher Ausbeute und großer Reinheit gewonnen werden konnte. Zudem wurde ein neuer WSCP-Klon hergestellt, mBoWSCPhis, der in seiner Sequenz dem maturen nativen BoWSCP entspricht und weitaus weniger Aggregationsprobleme zeigte als BoWSCPhis. Weiterführende Versuche zur Stabilität und dem Oligomerisierungsgrad von WSCP haben die neue Erkenntnis erbracht, dass die Phytolschwänze der von WSCP gebundenen Chlorophylle zwar essentiell sind für die Stabilität von WSCP-Oligomeren, nicht aber für die Oligomerisierung selbst, wie es in der Literatur bislang postuliert wurde. Zusätzlich zu ihrer außerordentlichen Hitzestabilität erwiesen sich die Chl-WSCP-Komplexe als stabil in einem breiten pH-Spektrum. AtWSCPhis besaß eine vergleichbare Stabilität, und auch das Oligomerisierungsverhalten zeigte Ähnlichkeiten zu BoWSCPhis. Im Rahmen einer Forschungskooperation mit dem Institut für Optik und Atomare Physik der TU Berlin wurden zeitaufgelöste Absorptionsspektren sowie Tieftemperatur-Fluoreszenzspektren an Chl-WSCP-Komplexen gemessen. Die Ergebnisse zeigten deutlich, dass die WSCP-gebundenen Chlorophylle excitonisch gekoppelt sind und wiesen zudem auf unterschiedliche Chl-Bindungsmodi hin. Aufgrund seines einfachen Aufbaus und seines geringen Chlorophyllgehalts hat sich WSCP bei diesen Versuchen als sehr geeignetes Modellsystem erwiesen, um Messungen zur Chlorophyllbindung mit Vorhersagen aus theoretischen Modellen zu vergleichen. Bei den Experimenten zur biologischen Funktion wurden einerseits Arabidopsis thaliana WSCP-„knock-out“-Pflanzen unter verschiedenen Bedingungen charakterisiert, andererseits wurden Experimente mit rekombinantem WSCP durchgeführt, um eine mögliche Interaktion mit anderen Proteinen zu detektieren. Die vegetativen Stadien der Mutante zeigten keinen Phänotyp; das native Arabidopsis-WSCP konnte später bei der Wildtyp-Pflanze ausschließlich in jungen Schoten lokalisiert werden, was eine Erklärung hierfür lieferte. Rekombinantes WSCP konnte Chlorophylle aus nativem LHCII entfernen, eine Interaktion mit Chlorophyllase konnte jedoch nicht nachgewiesen werden; daher konnte auch die Hypothese, WSCP sei ein Chl-Carrier beim Chl-Abbau, nicht untermauert werden. Bei den durchgeführten Enzym-Assays wurde eine geringfügige Inhibition der Cysteinprotease Papain beobachtet, aber keine Inhibition der Serinprotease Trypsin, obwohl Blumenkohl-WSCP N-proximal das Motiv der Künitz-Proteaseinhibitoren besitzt. Die Frage nach der biologischen Funktion von WSCP bleibt also weiterhin offen.
Resumo:
Bei Wachstum im Dunkeln zeigten sich rudimentäre Thylakoidstrukturen, wobei nach dem Transfer ins Licht ein vollständiges Thylakoidmembransystem erneut ausgebildet wurde. Parallel stieg, der Chlorophyllgehalt pro Zelle und das Verhältnis von Phycobilisomen zu Chlorophyll verschob sich erneut auf die Seite des Chlorophylls. Das bei Wachstum im Dunkeln als Monomer vorliegende PS II, war nicht funktional. Nach dem Transfer ins Licht, war nach etwa acht bis zwölf Stunden ein aktives PS II zu detektieren. Das PS I lag nach der Inkubation im Dunkeln, in geringerer Konzentration aber aktiv als Trimer in den Zellen vor.rnZwei Typ I Signalpeptidasen aus Synechocystis sp. PCC 6803 zeigten Unterschiede im Bezug auf ihre intrazelluläre Lokalisation. Für die Untersuchungen der Lokalisation konnte ein neues System der Fluoreszenzmikroskopie entwickelt und erfolgreich eingesetzt werden. Das LepB1 zeigte einen (auto-) proteolytischen Abbau. Für Untersuchungen zur katalytischen Aktivität wurden Vorläuferproteine als Substrate für LepB2 identifiziert.rnDie Funktionsweise der GrpE-Proteine aus verwandten Cyanobakterien zeigt Unterschiede. Bei beiden GrpE-Proteinen erfolgt der reversible Übergang von einem Dimer hin zu einem Monomer innerhalb eines physiologisch relevanten Temperaturbereichs in einem Schritt. Bei dem Protein aus Synechocystis sp. ist der N-Terminus und bei dem Protein aus dem thermophilen Bakterium Thermosynechococcus der C-Terminus für die Dimerisierung essentiell. rn