10 resultados para cell cycle proteins
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Chemotherapeutic SN1‑methylating agents are important anticancer drugs. They induce several covalent modifications in the DNA, from which O6‑methylguanine (O6MeG) is the main toxic lesion. In this work, different hypotheses that have been proposed to explain the mechanism of O6MeG‑triggered cell death were tested. The results of this work support the abortive processing model, which states that abortive post‑replicative processing of O6MeG‑driven mispairs by the DNA mismatch repair (MMR) machinery results in single‑strand gaps in the DNA that, upon a 2nd round of DNA replication, leads to DNA double‑strand break (DSB) formation, checkpoint activation and cell death. In this work, it was shown that O6MeG induces an accumulation of cells in the 2nd G2/M‑phase after treatment. This was accompanied by an increase in DSB formation in the 2nd S/G2/M‑phase, and paralleled by activation of the checkpoint kinases ATR and CHK1. Apoptosis was activated in the 2nd cell cycle. A portion of cells continue proliferating past the 2nd cell cycle, and triggers apoptosis in the subsequent generations. An extension to the original model is proposed, where the persistence of O6MeG in the DNA causes new abortive MMR processing in the 2nd and subsequent generations, where new DSB are produced triggering cell death. Interestingly, removal of O6MeG beyond the 2nd generation lead to a significant, but not complete, reduction in apoptosis, pointing to the involvement of additional mechanisms as a cause of apoptosis. We therefore propose that an increase in genomic instability resulting from accumulation of mis‑repaired DNA damage plays a role in cell death induction. Given the central role of DSB formation in toxicity triggered by chemotherapeutic SN1‑alkylating agents, it was aimed in the second part of this thesis to determine whether inhibition of DSB repair by homologous recombination (HR) or non‑homologous end joining (NHEJ) is a reasonable strategy for sensitizing glioblastoma cells to these agents. The results of this work show that HR down‑regulation in glioblastoma cells impairs the repair of temozolomide (TMZ)‑induced DSB. HR down‑regulation greatly sensitizes cells to cell death following O6‑methylating (TMZ) or O6‑chlorethylating (nimustine) treatment, but not following ionizing radiation. The RNAi mediated inhibition in DSB repair and chemo‑sensitization was proportional to the knockdown of the HR protein RAD51. Chemo‑sensitization was demonstrated for several HR proteins, in glioma cell lines proficient and mutated in p53. Evidence is provided showing that O6MeG is the primary lesion responsible for the increased sensitivity of glioblastoma cells following TMZ treatment, and that inhibition of the resistance marker MGMT restores the chemo‑sensitization achieved by HR down‑regulation. Data are also provided to show that inhibition of DNA‑PK dependent NHEJ does not significantly sensitized glioblastoma cells to TMZ treatment. Finally, the data also show that PARP inhibition with olaparib additionally sensitized HR down‑regulated glioma cells to TMZ. Collectively, the data show that processing of O6MeG through two rounds of DNA replication is required for DSB formation, checkpoint activation and apoptosis induction, and that O6MeG‑triggered apoptosis is also executed in subsequent generations. Furthermore, the data provide proof of principle evidence that down‑regulation of HR is a reasonable strategy for sensitizing glioma cells to killing by O6‑alkylating chemotherapeutics.
Resumo:
Die Expression des PKC-Hauptsubstrates MARCKS (myristoylated alanine-rich C kinase substrate) wird in Swiss 3T3-Fibroblasten in Abhängigkeit des Zellzyklus durch Variation der mRNA-Stabilität reguliert. In der vorliegenden Arbeit wurde die Beteiligung der 3' nichttranslatierten Region (3'UTR) der MARCKS-mRNA an der Stabilitätskontrolle analysiert. Durch Einsatz der RNase/EMSA-Technik konnten zwei cis-Elemente der MARCKS 3'UTR identifiziert und lokalisiert werden, die mit RNA-bindenden Swiss 3T3-Proteinen (trans-Faktoren) interagieren. Diese neu identifizierten cis-Elemente sind AU-reiche Elemente (ARE) der Klasse III, da sie sehr große Sequenzhomologie zu ARE dieser Klasse aufweisen und der MARCKS 3'UTR, wie für ARE typisch, Instabilität vermitteln.Durch UV-crosslinking wurden vier Proteine mit Molekülmassen von 55, 40, 36 und 30 kDa nachgewiesen, die spezifisch an das 52nt lange Haupt-ARE (MARCKS 52nt) mit unterschiedlicher Affinität binden konnten. Mit Hilfe von rekombinant hergestellten ELAV/Hu-Proteinen und einem ELAV/Hu-spezifischen, affinitätsgereinigten Antiserum konnte eines der vier Proteine (p36) als das ELAV/Hu-Protein HuR identifiziert werden. Die Funktion der ELAV/Hu-Proteine für die Stabilitätskontrolle der MARCKS-mRNA ließ sich durch transiente und stabile Transfektion von HuR und neuronenspezifischem HuD mit dem Tetracyclin induzierbaren Expressionssystem (Tetoff) in Swiss 3T3- bzw. MEF/3T3-Tetoff-Zellen verdeutlichen: Durch Überexpression von HuR und HuD wurde die wachstumsinduzierte Destabilisierung der MARCKS-mRNA bei Wiedereintritt der Zellen in den Zellzyklus unterbunden.
Resumo:
Maligne Melanome sind gegenüber Chemotherapeutika relativ resistent. Das methylierende Alkylanz Temozolomid sowie das chlorethylierende und DNA-Interstrand Crosslink (ICL) bildende Alkylanz Fotemustin kommen bei der Behandlung des malignen Melanoms als Mittel erster Wahl zum Einsatz. In der vorliegenden Arbeit konnte das erste Mal nachgewiesen werden, dass die zytotoxische Wirkung von Temozolomid und Fotemustin in Melanomzellen durch Apoptose vermittelt wird. Unter Verwendung klinisch relevanter Dosen der beiden Alkylantien konnte die Induktion von Apoptose durch vier unabhängige Methoden (Bestimmung der SubG1-Fraktion und der Apoptose- / Nekrose-Frequenz, Aktivierung der Effektorcaspasen-3 und -7 sowie Spaltung von PARP-1) nachgewiesen werden. Die Alkylierungen an der O6-Position des Guanins, welche durch beide Agenzien induziert werden, sind auch in Melanomzellen die wichtigsten Zytotoxizität-bewirkenden Läsionen in der DNA, und die O6-Methylguanin-DNA-Methyltransferase (MGMT) ist folglich ein herausragender Resistenzmarker. Eine der verwendeten Zelllinien (D05) exprimierte p53-Wildtypprotein. Diese Zelllinie war resistenter als alle anderen Zelllinien gegenüber Temozolomid und Fotemustin. Dies weist darauf hin, dass p53 nicht die Apoptoseinduktion in Melanomzellen verstärkt. Die Prozessierung des O6MeG erfolgt über die Mismatch-Reparatur (MMR) unter Generierung von DNA-Doppelstrangbrüchen (DSBs). Die Untersuchung der durch Temozolomid induzierten DSBs, nachgewiesen durch gammaH2AX-Induktion, korrelierte direkt mit der apoptotischen Antwort von Melanomzelllinien und DSBs können somit als eine entscheidende apoptoseauslösende Größe angesehen werden. Eine Resistenz gegenüber dem methylierenden Temozolomid in der Zelllinie MZ7 konnte auf einen Defekt in der MMR-Schadenserkennung auf der Ebene des MutSalpha-Komplexes zurückgeführt werden. Dieser Defekt hatte keinen Einfluss auf die Fotemustin-vermittelte Apoptoseinduktion. Neben MGMT konnte somit die MMR als Resistenzfaktor gegenüber methylierenden Agenzien in Melanomen identifiziert werden. Die Fotemustin-induzierte Apoptose wurde in Melanomzelllinien im Detail untersucht. Es konnte erstmals gezeigt werden, dass Fotemustin-bedingte ICLs in Zellen einen G2/M-Arrest im Behandlungszyklus induzieren. Wie anhand G1-arretierter Zellen nachgewiesen werden konnte, war das Durchlaufen der DNA-Replikation vor Erreichen des Arrests für die Induktion der Apoptose notwendig. Die Prozessierung von ICLs ist im Vergleich zu Methylierungen der DNA deutlich komplexer. Dies könnte erklären, warum in Melanomzellen die durch gammaH2AX-Induktion repräsentierten DSBs nicht mit der Sensitivität der einzelnen Zelllinien korreliert. Die Untersuchung unterschiedlich sensitiver Zelllinien zeigte ein vergleichbares Schadensniveau an ICLs und eine ebenso vergleichbare initiale Prozessierung derselben unter Generierung von DSBs. Die Prozessierung dieser sekundären Läsionen, welche anhand der Abnahme von gammaH2AX-Foci untersucht wurde, war hingegen in der sensitiveren Melanomzelllinie deutlich weniger effektiv. Es konnte weiterhin nachgewiesen werden, dass eine uneffektive Prozessierung der sekundären Läsionen einhergeht mit einer verstärkten und länger anhaltenden Aktivierung der in der DSB-Detektion beteiligten Kinase ATM und der Checkpoint Kinase 1. Es wäre daher denkbar, dass eine verstärkte Aktivität dieser Kinasen proapoptotische Signale vermittelt. Unterschiede in der Prozessierung der sekundären Läsionen könnten somit ein wichtiger Marker der ICL-induzierten Apoptose darstellen. Des weitern konnte nachgewiesen werden, dass nach Fotemustingabe die mitochondrial-vermittelte Apoptose einen effektiven Exekutionsweg in Melanomen darstellt. Während Cytochrom C-Freigabe, Bcl-2-Abnahme an den Mitochondrien, Bax-Rekrutierung und Caspase-9 Aktivität nachgewiesen werden konnten, wurden keine Hinweise auf eine Fas-Rezeptor-vermittelte Apoptose gefunden. Die Unfähigkeit, Rezeptor-vermittelte Apoptose zu unterlaufen, könnte die Bedeutungslosigkeit des p53-Gens in Melanomen begründen, da gerade dieser Weg in der Alkylantien-induzierten Apoptose in anderen Zellsystemen eine große Relevanz besitzt. Bei der Suche nach einem alternativen proapoptotischen Signalweg konnten Hinweise für die Beteiligung des Rb/E2F-1-Wegs, welcher über p73 agiert, in einer p53-mutierten Melanomzelllinie gefunden werden. Einen Einfluss der Proteine Survivin und XIAP als Resistenzfaktoren auf die Fotemustin-induzierte Apoptose wurde hingegen nicht nachgewiesen.
Resumo:
Survivin, a unique member of the family of inhibitors of apoptosis (IAP) proteins, orchestrates intracellular pathways during cell division and apoptosis. Its central regulatory function in vertebrate molecular pathways as mitotic regulator and inhibitor of apoptotic cell death has major implications for tumor cell proliferation and viability, and has inspired several approaches that target survivin for cancer therapy. Analyses in early-branching Metazoa so far propose an exclusive role of survivin as a chromosomal passenger protein, whereas only later during evolution the second, complementary antiapoptotic function might have arisen, concurrent with increased organismal complexity. To lift the veil on the ancestral function(s) of this key regulatory molecule, a survivin homologue of the phylogenetically oldest extant metazoan taxon (phylum Porifera) was identified and functionally characterized. SURVL of the demosponge Suberites domuncula shares significant similarities with its metazoan homologues, ranging from conserved exon/intron structures to the presence of localization signal and protein-interaction domains, characteristic of IAP proteins. Whereas sponge tissue displayed a very low steady-state level, SURVL expression was significantly up-regulated in rapidly proliferating primmorph cells. In addition, challenge of sponge tissue and primmorphs with cadmium and the lipopeptide Pam3Cys-Ser-(Lys)4 stimulated SURVL expression, concurrent with the expression of newly discovered poriferan caspases (CASL and CASL2). Complementary functional analyses in transfected HEK-293 revealed that heterologous expression of poriferan survivin in human cells not only promotes cell proliferation but also augments resistance to cadmium-induced cell death. Taken together, these results demonstrate both a deep evolutionary conserved and fundamental dual role of survivin, and an equally conserved central position of this key regulatory molecule in interconnected pathways of cell cycle and apoptosis. Additionally, SDCASL, SDCASL2, and SDTILRc (TIR-LRR containing protein) may represent new components of the innate defense sentinel in sponges. SDCASL and SDCASL2 are two new caspase-homolog proteins with a singular structure. In addition to their CASc domains, SDCASL and SDCASL2 feature a small prodomain NH2-terminal (effector caspases) and a remarkably long COOH-terminal domain containing one or several functional double stranded RNA binding domains (dsrm). This new caspase prototype can characterize a caspase specialization coupling pathogen sensing and apoptosis, and could represent a very efficient defense mechanism. SDTILRc encompasses also a unique combination of domains: several leucine rich repeats (LRR) and a Toll/IL-1 receptor (TIR) domain. This unusual domain association may correspond to a new family of intracellular sensing protein, forming a subclass of pattern recognition receptors (PRR).
Resumo:
Parasiten der Apicomplexa umfassen sowohl humanpathogene, als auch tierpathogene Protozoen. Beispiele für wichtige Vertreter human- und tierpathogener Parasiten sind Plasmodium falciparum und Eimeria tenella. E. tenella verursacht die Kokzidiose des Hühnchens, eine Darmerkrankung die weltweit für Verluste in einer geschätzten Höhe von bis zu 3 Milliarden US$ verantwortlich zeichnet. Eine prophylaktische Vakzinierung gegen diese Krankheit ist ökonomisch meist ineffizient, und eine Behandlung mit Kokzidiostatika wird durch häufige Resistenzbildung gegen bekannte Wirkstoffe erschwert. Diese Situation erfordert die Entwicklung neuer kostengünstiger Alternativen. Geeignete Zielproteine für die Entwicklung neuartiger Arzneistoffe zur Behandlung der Kokzidiose sind die Zyklin-abhängigen Kinasen (CDKs), zu denen auch die CDK-related Kinase 2 (EtCRK2) aus E. tenella gehört. Diese Proteine sind maßgeblich an der Regulation des Zellzyklus beteiligt. Durch chemische Validierung mit dem CDK Inhibitor Flavopiridol konnte nachgewiesen werden, dass ein Funktionsverlust von CDKs in E. tenella die Vermehrung des Parasiten in Zellkultur inhibiert. E. tenella CDKs sind daher als Zielproteine für die Entwicklung einer Chemotherapie der Kokzidiose geeignet. Mittels bioinformatischer Tiefenanalysen sollten CDK Proteine im Parasiten E. tenella identifiziert werden. Das Genom von E. tenella liegt in Rohfassung vor [ftp://ftp.sanger.ac.uk]. Jedoch waren zum Zeitpunkt dieser Arbeiten viele Sequenzen des Genoms noch nicht annotiert. Homologe CDK Proteine von E. tenella konnten durch den Vergleich von Sequenzinformationen mit anderen Organismen der Apicomplexa identifiziert und analysiert werden. Durch diese Analysen konnten neben der bereits bekannten EtCRK2, drei weitere, bislang nicht annotierte CDKs in E. tenella identifiziert werden (EtCRK1, EtCRK3 sowie EtMRK). Darüber hinaus wurde eine Analyse der entsprechenden Zykline – der Aktivatoren der CDKs – bezüglich Funktion und Struktur, sowie eine Datenbanksuche nach bisher nicht beschriebenen Zyklinen in E. tenella durchgeführt. Diese Suchen ergaben vier neue potentielle Zykline für E. tenella, wovon EtCYC3a als Aktivator der EtCRK2 von María L. Suárez Fernández (Intervet Innovation GmbH, Schwabenheim) bestätigt werden konnte. Sequenzvergleiche lassen vermuten, dass auch EtCYC1 und EtCYC3b in der Lage sind, EtCRK2 zu aktivieren. Außerdem ist anzunehmen, dass EtCYC4 als Aktivator der EtCRK1 fungiert. Ein weiterer Schwerpunkt der vorliegenden Arbeit war die Suche und Optimierung nach neuen Inhibitoren von CDKs aus E. tenella. In vorangegangenen Arbeiten konnten bereits Inhibitoren der EtCRK2 gefunden werden [BEYER, 2007]. Mittels Substruktur- und Ähnlichkeitssuchen konnten im Rahmen dieser Arbeit weitere Inhibitoren der EtCRK2 identifiziert werden. Vier dieser Strukturklassen erfüllen die Kriterien einer Leitstruktur. Eine dieser Leitstrukturen gehört zur Strukturklasse der Benzimidazol-Carbonitrile und ist bislang nicht als Inhibitor anderer Kinasen beschrieben. Diese neu identifizierte Leitstruktur konnte in silico weiter optimiert werden. Im Rahmen dieser Arbeit wurden Bindungsenergien von Vertretern dieser Strukturklasse berechnet, um einen wahrscheinlichen Bindemodus vorherzusagen. Für die weiterführende in silico Optimierung wurde eine virtuelle kombinatorische Substanzbibliothek dieser Klasse erstellt. Die Auswahl geeigneter Verbindungen für eine chemische Synthese erfolgte durch molekulares Docking unter Nutzung von Homologiemodellen der EtCRK2. Darüber hinaus wurde ein in silico Screening nach potentiellen Inhibitoren der PfMRK und EtMRK durchgeführt. Dabei konnten weitere interessante virtuelle Hit-Strukturen aus einer Substanzdatenbank kommerziell erhältlicher Verbindungen gefunden werden. Durch dieses virtuelle Screening konnten jeweils sieben Verbindungen als virtuelle Hits der PfMRK sowie der EtMRK identifiziert werden. Die Häufung von Strukturklassen mit bekannter CDK Aktivität deutet darauf hin, dass während des virtuellen Screenings eine Anreicherung von CDK Inhibitoren stattgefunden hat. Diese Ergebnisse lassen auf eine Weiterentwicklung neuer Wirkstoffe gegen Kokzidiose und Malaria hoffen.
Resumo:
Die Ursachen der Zweittumorentwicklung bei Personen, die eine Krebserkrankung in der Kindheit überlebten, sind weitgehend unklar. Strahlenexposition oder Chemotherapie führen in normalen somatischen Zellen zu DNA-Schäden, welche bei fehlerhafter Reparatur eine Karzinogenese auslösen können. Es ist denkbar, dass genetische Unterschiede z. B. in den Signalwegen der Zellzykluskontrolle und der DNA-Reparatur nach therapieinduzierten DNA-Schäden eine entscheidende Rolle bei der Zweittumorentwicklung spielen. Im Rahmen dieser Arbeit wurden 20 Personen, die eine Krebserkrankung in der Kindheit überlebten und einen unabhängigen Zweittumor entwickelten, mit 20 gematchten Kontrollpersonen ohne Zweittumorentwicklung verglichen. Die primären Fibroblasten der Patienten wurden auf somatische, genetische und/oder epigenetische Unterschiede in DNA-Reparaturnetzwerken untersucht. Die biologisch relevantesten Ergebnisse lieferten Proteinuntersuchungen mittels Antikörper-Microarrays. Hierbei wurde eine konstitutiv erniedrigte Menge an RAD9A und einigen anderen DNA-Reparatur-Proteinen (BRCA1, DDIT3, MSH6, p53, RAD51) in den Zweittumorpatienten im Vergleich zu den Eintumorpatienten festgestellt. Nach einer DNA-Schädigung durch 1 Gray Bestrahlung erhöhte sich die RAD9A-Proteinmenge, wobei die Zweittumorpatienten eine geringere Induktion als die Eintumorpatienten zeigten. Bei der Quantifizierung der mRNA-Expression mittels RTq-PCR wurde ein niedrigerer RAD9A-mRNA-Level sowohl in den unbehandelten und als auch in den 1 Gray bestrahlten Zellen der Zweittumorpatienten festgestellt. SNP-Array und Methylierungsanalysen konnten keine Auffälligkeiten im RAD9A-Lokus nachweisen. Diese Ergebnisse unterstützen die Hypothese, dass Modulationen von RAD9A und anderen Zellzyklusarrest- und DNA-Reparaturproteinen zum Risiko einer Zweittumorentwicklung in Kinderkrebspatienten beitragen. Bei einem diskordanten monozygoten Zwillingspaar wurde in ca. 20% der Zellen des Zweittumorzwillings eine Hypermethylierung des Tumorsuppressorgens BRCA1 festgestellt, die mit einer konstitutiv erniedrigten BRCA1-Proteinexpression einhergeht und einen möglichen Krebsrisikofaktor darstellt. Die partielle Deletion des Gens RSPO3, die wahrscheinlich als somatisches Zellmosaik beim Zweittumorzwilling vorliegt, korreliert mit einer niedrigeren RSPO3-mRNA-Expression und ist vermutlich auch mit einer erhöhten Krebsprädisposition assoziiert.
Resumo:
In der vorliegenden Arbeit wurde eine Analysenmethode auf Basis der Massenbestimmung über Elektrospray-Ionisation qualifiziert, mit der es möglich ist, den Gehalt beider in humanen Zellen vorliegenden isoformen Chaperone HSP90-alpha und HSP90-beta sowie deren Phosphorylierungsstatus in der sog. „charged linker“-Region (CLR) getrennt voneinander zu bestimmen. Die Quantifizierung dieser posttranslationalen Modifikation von HSP90 in der noch wenig untersuchten Region des Chaperons stellte eine besondere Herausforderung an das analytische Messsystem dar, da diese sich fast ausschließlich aus geladenen Aminosäuren zusammensetzt und eine hohe Sequenzhomologie der beiden Isoformen in humanen Zellen vorliegt. Mit dieser Methode ist es gelungen, sowohl die stärkere Expression beider Isoformen in Tumor-Zelllinien im Vergleich zu Nicht-Tumor-Zelllinien als auch signifikant höhere Level beider phosphorylierten Varianten in den Tumor-Zelllinien nachzuweisen. Des Weiteren konnte durch gezielte Arretierung der Tumor-Zelllinie HCT116 in der G0/G1-Phase des Zellzyklus der Nachweis erbracht werden, dass nur HSP90-alpha in diesem Ruhestadium der Zellteilung in der phosphorylierten Form vorliegt. rnDa die Phosphorylierung der CLR von HSP90 als ein Marker für die Substrataktivierung herangezogen werden kann, besteht jetzt die Möglichkeit, Auswirkungen von z. B. HSP90-Inhibitoren auf beide HSP90-Isoformen hinsichtlich ihrer Expression und Phosphorylierung durch die Casein Kinase II (CK II) im zellulären Umfeld zu testen.rnIn-vitro konnte die Phosphorylierung der CLR von HSP90-alpha und -beta mit der CK II an den rekombinant hergestellten Proteinen nachgestellt werden. Dieses typische Phosphorylierungs-Motiv (S-X-X-E/D) findet man bei sehr vielen Co-Chaperonen wie auch bei der Prostaglandin E Synthase p23, das ebenfalls durch eine in-vitro Kinase-Reaktion mit der CK II an drei Positionen phosphoryliert wurde. Durch ein Binde-Assay zeigte sich, dass p23 nur in dieser modifizierten Form an HSP90-alpha bindet. Das Bindeverhalten von p23 an die beta-Isoform wird durch diese Phosphorylierung jedoch nicht beeinflusst. Diese Erkenntnisse erweitern das Verständnis des bis dato beschriebenen Chaperon-Zyklus von HSP90 und zeigen deutliche Unterschiede in den Aktivierungszyklen beider Isoformen auf. Da die Casein Kinase II hier entscheidend in den durch HSP90 vermittelten Aktivierungsprozess eingreift, eröffnet sich ein weites Feld an Möglichkeiten, diese Prozesse an weiteren Co-Chaperonen und Substratproteinen zu studieren.rn
Resumo:
Der Stamm der Apicomplexa ist eine artenreiche Gruppe, der einzellige, meist obligat intrazelluläre Parasiten angehören, darunter auch erstzunehmende Krankheitserreger wie Plasmodium sp. sowie tierpathogene Vertreter wie Eimeria sp. und Theileria sp. Eimeria sp. verursacht die Kokzidiose beim Huhn. Diese Krankheit bedingt weltweite Verluste in der Geflügelindustrie von etwa 3 Milliarden US$ pro Jahr [DALLOUL & LILLEHOJ, 2006; SHIRLEY et al., 2007; LUCIUS & LOOS-FRANK, 2008]. Die Parasiten weisen eine hohe Resistenzbildungsrate gegen vorhandene Wirkstoffe auf. Zudem ist der Einsatz von Vakzinen mit Nebenwirkungen verbunden und für hohe Produktionskosten verantwortlich. Daher ist die Entwicklung von neuen, kostengünstigen und effektiven Kokzidiostatika eine dringend notwendige Herausforderung [KINNAIRD et al., 2004]. rnAuf Grund ihrer essentiellen, regulatorischen Funktion im eukaryotischen Zellzyklus sind Zyklin-abhängige Kinasen (CDKs) validierte Zielproteine [LEHNINGER et al., 2005]. Auch Eimeria tenella CDC2-related kinase 2 (EtCRK2) wurde bereits mittels des bekannten CDK-Inhibitors Flavopiridol als Zielprotein chemisch validiert [ENGELS et al., 2010]. Wie bei allen CDKs ist die Aktivität von EtCRK2 abhängig von der Bindung eines Aktivators, der zur Zyklin-Proteinfamilie gehört. Dieser natürliche EtCRK2-Aktivator war jedoch bislang nicht bekannt. Deshalb war ein Teil dieser Arbeit die Identifizierung des natürlichen EtCRK2-Aktivators. Bioinformatische Analysen identifizierten vier E. tenella Zyklin-ähnliche Proteine (EtCYC1, EtCYC3a, EtCYC3b und EtCYC4), die nah verwandt zu den Plasmodium falciparum-Zyklinen sind [ENGELS et al., 2010; SUÁREZ FERNÁNDEZ et al., bislang unveröffentlichte Daten]. Im Rahmen dieser Arbeit konnten zwei neue Aktivatoren identifiziert und biochemisch charakterisiert werden: der bekannte CDK-Aktivator XlRINGO und das neue E. tenella-Zyklin EtCYC3a. Nachdem der nicht-radioaktive TR-FRET-Assay für die EtCRK2 etabliert und optimiert wurde, konnte die EtCRK2-Aktivität im Komplex mit beiden Aktivatoren und weitere wichtige kinetische Parameter bestimmt werden.rnZusätzlich wurde dieser Assay zum in vitro Screening einer kommerziellen Chemikalienbibliothek auf die EtCRK2 eingesetzt, um potentielle Inhibitoren für EtCRK2 zu identifizieren. Dieses in vitro Screening gefolgt von einer in silico Hit-Anreicherung identifizierte 19 aktive Verbindungen für die durch EtCYC3a und XlRINGO aktivierte EtCRK2. Zudem wurden drei Struktur-Cluster definiert: Naphthoquinone, 8-Hydroxyquinoline und 2-Pyrimidinyl-aminopiperidin-propan-2-ole. rnDie aktivsten Vertreter von jedem Cluster wurden als Leitstrukturen ausgewählt und auf EtCRK2 und HsCDK2 getestet. Aufgrund ihrer inhibierenden Wirkung auf EtCRK2 stellen diese Verbindungen viel versprechende Leitstrukturen für die Entwicklung eines neuen Antikokzidiums dar. Hiermit konnte auch gezeigt werden, dass BES124764, der Vertreter des 2-Pyrimidinyl-aminopiperidin-propan-2-ol-Clusters, in der Lage ist, die EtCRK2 selektiv zu inhibieren. rnDaher wird BES124764 sowie einige Derivate in den Leitstruktur-Optimierungsprozess für die Auffindung eines neuen Arzneimittelkandidaten gegen Kokzidiose eingehen.rn
Resumo:
SUMOylation is a highly dynamic and reversible posttranslational protein modification closely related to ubiquitination. SUMOylation regulates a vast array of different cellular functions, such as cell cycle, nuclear transport, DNA damage response, proliferation and transcriptional activation. Several groups have shown in in vitro studies how important SUMOylation is for early B cell development and survival as well as for later plasma cell differentiation. This thesis focuses on the deSUMOylation protease SENP1 and its in vivo effects on B cell development and differentiation. For this a conditional SENP1 knockout mouse model was crossed to the CD19-Cre mouse strain to generate a B cell specific SENP1 knockout mouse.rnIn our conditional SENP1ff CD19-Cre mouse model we observed normal numbers of all B cell subsets in the bone marrow. However in the spleen we observed an impairment of B cell survival, based on a 50% reduction of the follicular B cell compartment, whereas the marginal zone B cell compartment was unchanged. T cell numbers were comparable to control mice. rnFurther, impairments of B cell survival in SENP1ff CD19-Cre mice were analysed after in vivo blocking of IL7R signalling. The αIL7R treatment in mature mice blocked new B cell formation in the bone marrow and increased apoptosis rates could be observed in splenic SENP1 KO B cells. Additionally, a higher turnover rate of B cells was measured by in vivo BrdU incorporation.rnSince it is known that the majority of transcription factors that are important for the maintenance of the germinal centre reaction or for induction of plasma cell development are SUMOylated, the question arose, how defective deSUMOylation will manifest itself in these processes. The majority of in vitro cultured splenic B cells, stimulated to undergo class switch recombination and plasma cell differentiation underwent activation induced cell death. However, the surviving cells increasingly differentiated into IgM expressing plasma cells. Class switch recombination to IgG1 was reduced. These observations stood in line with observation made in in vivo sheep red blood cell immunization experiments, which showed increased amounts of germinal centres and germinal centre B cells, as well as increased amounts of plasma cells differentiation in combination with decreased class switch to IgG1.rnThese results lead to the conclusion that SENP1 KO B cells increasingly undergo apoptosis, however, B cells that survive SENP1 deficiency are more prone to undergo plasma cell differentiation. Further, the precursors of these plasma cells either are not as capable of undergoing class switch recombination or they do switch to IgG1 and succumb to activation induced cell death. One possible explanation for both scenarios could be a defective DNA damage response mechanisms during class switch recombination, caused by impaired deSUMOylation. rn
Resumo:
Die mittlere Überlebenszeit nach Erkennung eines Glioblastoms ohne Behandlung liegt bei 3 Monaten und kann durch die Behandlung mit Temozolomid (TMZ) auf etwa 15 Monate gesteigert werden. Neben TMZ sind die chlorethylierenden Nitrosoharnstoffe die meistversprechendsten und am häufigsten eingesetzten Chemotherapeutika in der Gliomtherapie. Hier liegt die mittlere Überlebenszeit bei 17,3 Monaten. Um die Therapie des Glioblastoms noch effektiver zu gestalten und Resistenzen zu begegnen, werden unterschiedlichste Ansätze untersucht. Eine zentrale Rolle spielen hierbei das activator protein 1 (AP-1) und die mitogen aktivierten Proteinkinasen (MAPK), deren Funktion in bisherigen Arbeiten noch unzureichend beleuchtet wurde.rnBesonders mit der Rolle des AP-1-bildenden Proteins FRA-1 in der Therapie des Glioblastoms haben sich bisher nur wenige Arbeiten beschäftigt, weshalb im ersten Teil der vorliegenden Arbeit dessen Funktion in der Regulation der Chemosensitivität gegenüber dem chlorethylierenden Agenz ACNU genauer untersucht wurde. Es konnte gezeigt werden, dass die FRA 1-Expression durch Behandlung mit ACNU induziert wird. Die Induktion erfolgte über die beiden MAPKs ERK1/2 und p38K. JNK hatte keinen Einfluss auf die Induktion. Durch die Herunterregulation der FRA-1-Expression mit Hilfe von siRNA und eines shRNA exprimierenden Plasmids kam es zu einer signifikanten Sensitivierung gegenüber ACNU. Dabei konnte gezeigt werden, dass die Herunterregulation der FRA-1-Expression in einer verminderten AP 1-Bildung, bedingt durch eine reduzierte Menge an FRA-1 im AP-1-Komplex resultiert. Die Sensitivierung gegenüber ACNU ist weder durch eine Veränderung in der DNA-Reparatur, noch in der Modulation der FAS-Ligand- bzw. FAS-Rezeptor-Expression bedingt. Auch die hier untersuchten BCL 2-Familienmitglieder wiesen keine Unterschiede in der Expression durch Modulation der FRA 1-Expression auf. Allerdings kam es durch die verminderte FRA-1-Expression zu einer Reduktion der Zellzahl in der G2/M-Phase nach Behandlung mit ACNU. Diese ging einher mit einer reduzierten Menge an phosphoryliertem und unphosphoryliertem CHK1, weshalb davon auszugehen ist, dass FRA 1 nach ACNU-Behandlung in Gliomzellen vor der Apoptose schützt, indem es modulierend auf die Zellzykluskontrolle einwirkt.rnIm zweiten Teil dieser Arbeit wurde die Regulation der apoptotischen Antwort nach Behandlung mit ACNU und TMZ genauer beleuchtet, wobei ein spezielles Augen¬merk auf AP 1 und die MAPKs gelegt wurde. Hier konnte gezeigt werden, dass die Apoptose nach Behandlung mit ACNU bzw. TMZ sowohl durch Spaltung von Pro-Caspase 8, als auch Pro-Caspase 9 eingeleitet wird. Dabei akkumulierte in beiden Fällen p53 vermehrt im Zellkern. Eine Inhibierung der transkriptionellen Aktivität von p53 führte nach ACNU-Behandlung zu einer Sensitivierung der Zellen, nach TMZ-Behandlung kam es zu einem leichten Anstieg in der Vitälität. Der FAS-Rezeptor wurde nach ACNU- und nach TMZ-Behandlung aktiviert und auch die DNA-Reparaturproteine DDB2 und XPC wurden in beiden Fällen vermehrt exprimiert. Für die MAPKs JNK und ERK1/2 konnte gezeigt werden, dass diese pro-apoptotisch wirken. Die AP-1-Bildung nach ACNU-Behandlung erfolgte bereits nach 24 h und war von langer Dauer, wohingegen nach TMZ-Behandlung nur eine transiente AP 1-Bildung zu relativ späten Zeitpunkten detektiert werden konnte. Ebenso konnte für das AP-1-Zielgen FAS-Ligand nach ACNU-Behandlung eine relativ schnelle, lang anhaltende Aktivierung detektiert werden, wohingegen nach TMZ-Behandlung zu einem späten Zeitpunkt ein kurzer Anstieg im Signal zu verzeichnen war. In späteren Experimenten konnte gezeigt werden, dass das BCL-2-Familienmitglied BIM eine zentrale Rolle in der Regulation des intrinsischen Apoptosesignalweges nach Behandlung mit ACNU und TMZ spielt. Die hier entstanden Ergebnisse tragen entscheidend zum Verständnis der durch diese beiden Agenzien gesteuerten, apoptotischen Signalwege bei und bieten eine fundierte Grundlage für weitere Untersuchungen.rn