8 resultados para cell apoptosis

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Die AMPK ist ein ubiquitär exprimiertes, heterotrimeres Enzym, das bei Energiemangel das Überleben der Zelle sichert. Um diese Funktion ausüben zu können fungiert die AMPK als sogenannter „Energie-Sensor“, der durch steigende AMP Mengen aktiviert wird. In diesem Zustand werden ATP verbrauchende Reaktionen inhibiert und gleichzeitig ATP generierende Vorgänge induziert. Im vaskulären System konnte gezeigt werden, dass die endotheliale NOSynthase durch die AMPK aktiviert, die Angiogenese stimuliert, die Endothelzellapoptose und das Wachstum von Gefäßmuskelzellen inhibiert wird. All diese Prozesse sind fundamental in der Entwicklung von kardiovaskulären Krankheiten, was auf eine protektive Funktion der AMPK im vaskulären System hindeutet. In der vorliegenden Arbeit sollten die Effekte der in vivo Modulation der AMPK Aktivität auf Endothelfunktion, oxidativen Stress und Inflammation untersucht werden. Dazu wurden zwei unterschiedliche Mausmodelle genutzt: Einerseits wurde die AMPK Aktivität durch den pharmakologischen AMPK-Aktivator AICAR stimuliert und andererseits die vaskulär vorherrschende AMPK-Isoform durch knock out ausgeschaltet. Zur Induktion von oxidativem Stress wurde ein bereits charakterisiertes Angiotensin II-Modell angewandt. Zur Untersuchung gehörten neben den Superoxid-Messungen auch die Bestimmung der Stickstoffmonoxid-Mengen in Serum und Aortengewebe, die Relaxationsmessungen in isometrischen Tonusstudien sowie HPLC-basierte Assays. Es konnte gezeigt werden, dass durch die Aktivierung der AMPK mittels AICAR die Angiotensin II induzierte Endotheldysfunktion, der oxidative Stress und auch die vaskuläre Inflammation verbessert werden konnte. Weiterhin zeigte sich dass der knock out der vaskulären Isoform (α1) im Angiotensin II Modell eine signifikant verstärkte Endotheldysfunktion, oxidativen Stress und Inflammation nach sich zog. Anhand der erhobenen Daten konnte die NADPH-Oxidase als Hauptquelle des Angiotensin II induzierten oxidativen Stresses identifiziert werden, wobei sich diese Quelle als AMPK sensitiv erwies. Durch die Aktivierung konnte die Aktivität der NADPH-Oxidase verringert und durch die α1AMPK Defizienz signifikant erhöht werden. Auch die mitochondriale Superoxidproduktion konnte durch die Modulation der AMPK Aktivität beeinflusst werden. Die vaskuläre Inflammation, die anhand der Surrogaten VCAM-1, COX-2 und iNOS untersucht wurde, konnte durch Aktivierung der AMPK verringert werden, der knock out der α1AMPK führte so einer sehr starken Expressionssteigerung der induzierbaren NO-Synthase, was in einem starken Anstieg der NO-Produktion und somit der Peroxynitritbildung resultierte.Die dargestellten Daten deuten stark auf eine protektive Funktion der AMPK im vaskulären System hin und sollte als therapeutisches Ziel, nicht nur in Bezug auf diabetische Patienten, in Betracht gezogen werden.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Untersuchungen zur Expression der induzierbaren NO-Synthetase (NOS2) belegen eine häufige Expression dieses Enzyms in Tumoren unterschiedlicher Gewebe. Bislang ist jedoch ungeklärt, ob die Expression der NOS2 in Tumorzellen die apoptotische Eliminierung durch zytotoxische T-Zellen beeinflussen kann. In der vorliegenden Arbeit wurden die Folgen einer endogenen NO-Synthese auf die Apoptosesensitivität von HEK293-Zellen untersucht. Um primäre NO-Wirkungen von NO-induzierten, sekundären (kompensatorischen) Veränderungen zu trennen, wurde mit einem induzierbaren Vektorsystem gearbeitet. Die NOS2 wurde zunächst unter der Kontrolle eines Ecdyson-sensitiven Promoters in HEK293-Zellen kloniert. Es konnten regulierbare NOS2-Klone selektiert werden, die nach Ponasteronbehandlung dosisabhängig die NOS2 exprimieren und NO synthetisieren. Die NOS2-Expression wurde durch Western Blot Analyse und Immunfluoreszenzfärbung dargestellt und die NO-Produktion mit Hilfe der Griess-Reaktion gemessen. An den NOS2-induzierten Zellen wurde dann der Einfluss von NO auf die CD95-vermittelte Apoptose analysiert. Es zeigte sich nach Stimulation des CD95-Rezeptors eine deutliche Korrelation der Apoptoserate mit der NOS2-Expression. In Kokulturexperimenten mit Peptid-spezifischen zytotoxischen T-Zellen zeigte sich, dass NO-produzierende Zielzellen effektiver eliminiert werden konnten. Auch nach Behandlung der Zellen mit TRAIL ergab sich eine höhere Apoptoserate in NO-produzierenden Zellen. Die weitere Analyse der durch NO beeinflussten Signalwege ergab eine Beteiligung von ER-Stress-vermittelten Apoptosewegen. Dies zeigte sich an der Hochregulation des ER-Stress-Proteins Grp78 (BiP) nach NOS2-Expression und der Spaltung der am ER-lokalisierten Caspase-4. Darüber hinaus konnte der schnellere Verlust des mitochondrialen Membranpotentials in Abhängigkeit von der NOS2-Expression nachgewiesen werden. Weiterhin wurde die Wirkung einer dauerhaften NO-Exposition auf die Apoptosesensitivität der Zellen untersucht. Auch ohne zusätzliche CD95-Stimulation induzierte eine kontinuierliche NOS2-Expression nach wenigen Tagen in den EcR293-NOS2-Zellen Apoptose. Diese Dauerbehandlung führte zum nahezu vollständigen Absterben der Kulturen. Einige Zellen überlebten jedoch diese Behandlung und wuchsen zu Zellklonen. Diese NO-resistenten Klone konnten isoliert werden. Sie zeigten eine zusätzliche Resistenz für CD95-vermittelte Apoptosesignale und waren besser vor dem Angriff Peptid-spezifischer CTLs geschützt. Die Apoptoseresistenz blieb auch nach längerer Kultur erhalten und scheint auf NO-induzierter Genotoxizität zu beruhen. Anhand dieser Arbeit konnte gezeigt werden, dass allein durch chronische NO-Behandlung eine Selektion apoptoseresistenter Zellen stattfinden kann.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Survivin, a unique member of the family of inhibitors of apoptosis (IAP) proteins, orchestrates intracellular pathways during cell division and apoptosis. Its central regulatory function in vertebrate molecular pathways as mitotic regulator and inhibitor of apoptotic cell death has major implications for tumor cell proliferation and viability, and has inspired several approaches that target survivin for cancer therapy. Analyses in early-branching Metazoa so far propose an exclusive role of survivin as a chromosomal passenger protein, whereas only later during evolution the second, complementary antiapoptotic function might have arisen, concurrent with increased organismal complexity. To lift the veil on the ancestral function(s) of this key regulatory molecule, a survivin homologue of the phylogenetically oldest extant metazoan taxon (phylum Porifera) was identified and functionally characterized. SURVL of the demosponge Suberites domuncula shares significant similarities with its metazoan homologues, ranging from conserved exon/intron structures to the presence of localization signal and protein-interaction domains, characteristic of IAP proteins. Whereas sponge tissue displayed a very low steady-state level, SURVL expression was significantly up-regulated in rapidly proliferating primmorph cells. In addition, challenge of sponge tissue and primmorphs with cadmium and the lipopeptide Pam3Cys-Ser-(Lys)4 stimulated SURVL expression, concurrent with the expression of newly discovered poriferan caspases (CASL and CASL2). Complementary functional analyses in transfected HEK-293 revealed that heterologous expression of poriferan survivin in human cells not only promotes cell proliferation but also augments resistance to cadmium-induced cell death. Taken together, these results demonstrate both a deep evolutionary conserved and fundamental dual role of survivin, and an equally conserved central position of this key regulatory molecule in interconnected pathways of cell cycle and apoptosis. Additionally, SDCASL, SDCASL2, and SDTILRc (TIR-LRR containing protein) may represent new components of the innate defense sentinel in sponges. SDCASL and SDCASL2 are two new caspase-homolog proteins with a singular structure. In addition to their CASc domains, SDCASL and SDCASL2 feature a small prodomain NH2-terminal (effector caspases) and a remarkably long COOH-terminal domain containing one or several functional double stranded RNA binding domains (dsrm). This new caspase prototype can characterize a caspase specialization coupling pathogen sensing and apoptosis, and could represent a very efficient defense mechanism. SDTILRc encompasses also a unique combination of domains: several leucine rich repeats (LRR) and a Toll/IL-1 receptor (TIR) domain. This unusual domain association may correspond to a new family of intracellular sensing protein, forming a subclass of pattern recognition receptors (PRR).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study deals with the function and regulation of programmed cell death, or apoptosis, in the development of the embryonic central nervous system of Drosophila melanogaster. The first part provides a description of apoptosis-deficient embryos, which showed that preventing apoptosis does not cause gross morphological defects in the CNS, as it appears well organized despite the presence of too many cells. An analysis of the incidence and pattern of apoptosis over the course of development discloses a partly very orderly pattern suggesting tight spatio-temporal control, but also reveals random apoptotic cells, which suggests a certain amount of plasticity in the embryo. This analysis also allowed precise identification of some of the dying neural cells in the embryo, and establishment of single cell models for studying regulation of segment-specific apoptosis in the embryonic CNS. In the second part of the work, further investigations into mechanisms controlling segment-specific apoptosis revealed the involvement of two Hox genes, Antennapedia (Antp) and Ultrabithorax (Ubx), in this process. Hox genes control the formation of segment-specific structures in their domains of expression, but also regulate organ and tissue morphogenesis. The study presented here shows that Antp and Ubx play antagonistic roles in motoneuron survival in the embryo. Ubx expression in the CNS is strongly upregulated at a late point in development, when most cells have begun to differentiate. This upregulation shortly precedes Ubx-dependent, segment-specific apoptosis of two differentiated motoneurons. It could further be demonstrated that Antp is required for proper development of the NB7-3 lineage and for survival of the NB7-3 motoneuron in the anterior thoracic segments. In segments where Antp and Ubx expression overlaps, Ubx counteracts the anti-apoptotic function of Antp, resulting in cell death. Thus, these two Hox genes play opposing roles in the survival of differentiated neurons in the late developing nervous system. They thereby contribute to establishment of correct connections between outward-projecting neurons and their targets, which is crucial for the assembly of functional neural circuits, as these have to fulfill region-specific locomotion and sensory requirements along the antero-posterior body axis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the perinatal period the developing brain is most vulnerable to inflammation. Prenatal infection or exposure to inflammatory factors can have a profound impact on fetal neurodevelopment with long-term neurological deficits, such as cognitive impairment, learning deficits, perinatal brain damage and cerebral palsy. Inflammation in the brain is characterized by activation of resident immune cells, especially microglia and astrocytes whose activation is associated with a variety of neurodegenerative disorders like Alzheimer´s disease and Multiple sclerosis. These cell types express, release and respond to pro-inflammatory mediators such as cytokines, which are critically involved in the immune response to infection. It has been demonstrated recently that cytokines also directly influence neuronal function. Glial cells are capable of releaseing the pro-inflammatory cytokines MIP-2, which is involved in cell death, and tumor necrosis factor alpha (TNFalpha), which enhances excitatory synaptic function by increasing the surface expression of AMPA receptors. Thus constitutively released TNFalpha homeostatically regulates the balance between neuronal excitation and inhibition in an activity-dependent manner. Since TNFalpha is also involved in neuronal cell death, the interplay between neuronal activity MIP-2 and TNFalpha may control the process of cell death and cell survival in developing neuronal networks. An increasing body of evidence suggests that neuronal activity is important in the regulation of neuronal survival during early development, e.g. programmed cell death (apoptosis) is augmented when neuronal activity is blocked. In our study we were interested on the impact of inflammation on neuronal activity and cell survival during early cortical development. To address this question, we investigated the impact of inflammation on neuronal activity and cell survival during early cortical development in vivo and in vitro. Inflammation was experimentally induced by application of the endotoxin lipopolysaccharide (LPS), which initiates a rapid and well-characterized immune response. I studied the consequences of inflammation on spontaneous neuronal network activity and cell death by combining electrophysiological recordings with multi-electrode arrays and quantitative analyses of apoptosis. In addition, I used a cytokine array and antibodies directed against specific cytokines allowing the identification of the pro-inflammatory factors, which are critically involved in these processes. In this study I demonstrated a direct link between inflammation-induced modifications in neuronal network activity and the control of cell survival in a developing neuronal network for the first time. Our in vivo and in vitro recordings showed a fast LPS-induced reduction in occurrence of spontaneous oscillatory activity. It is indicated that LPS-induced inflammation causes fast release of proinflammatory factors which modify neuronal network activity. My experiments with specific antibodies demonstrate that TNFalpha and to a lesser extent MIP-2 seem to be the key mediators causing activity-dependent neuronal cell death in developing brain. These data may be of important clinical relevance, since spontaneous synchronized activity is also a hallmark of the developing human brain and inflammation-induced alterations in this early network activity may have a critical impact on the survival of immature neurons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chemotherapeutic SN1‑methylating agents are important anticancer drugs. They induce several covalent modifications in the DNA, from which O6‑methylguanine (O6MeG) is the main toxic lesion. In this work, different hypotheses that have been proposed to explain the mechanism of O6MeG‑triggered cell death were tested. The results of this work support the abortive processing model, which states that abortive post‑replicative processing of O6MeG‑driven mispairs by the DNA mismatch repair (MMR) machinery results in single‑strand gaps in the DNA that, upon a 2nd round of DNA replication, leads to DNA double‑strand break (DSB) formation, checkpoint activation and cell death. In this work, it was shown that O6MeG induces an accumulation of cells in the 2nd G2/M‑phase after treatment. This was accompanied by an increase in DSB formation in the 2nd S/G2/M‑phase, and paralleled by activation of the checkpoint kinases ATR and CHK1. Apoptosis was activated in the 2nd cell cycle. A portion of cells continue proliferating past the 2nd cell cycle, and triggers apoptosis in the subsequent generations. An extension to the original model is proposed, where the persistence of O6MeG in the DNA causes new abortive MMR processing in the 2nd and subsequent generations, where new DSB are produced triggering cell death. Interestingly, removal of O6MeG beyond the 2nd generation lead to a significant, but not complete, reduction in apoptosis, pointing to the involvement of additional mechanisms as a cause of apoptosis. We therefore propose that an increase in genomic instability resulting from accumulation of mis‑repaired DNA damage plays a role in cell death induction. Given the central role of DSB formation in toxicity triggered by chemotherapeutic SN1‑alkylating agents, it was aimed in the second part of this thesis to determine whether inhibition of DSB repair by homologous recombination (HR) or non‑homologous end joining (NHEJ) is a reasonable strategy for sensitizing glioblastoma cells to these agents. The results of this work show that HR down‑regulation in glioblastoma cells impairs the repair of temozolomide (TMZ)‑induced DSB. HR down‑regulation greatly sensitizes cells to cell death following O6‑methylating (TMZ) or O6‑chlorethylating (nimustine) treatment, but not following ionizing radiation. The RNAi mediated inhibition in DSB repair and chemo‑sensitization was proportional to the knockdown of the HR protein RAD51. Chemo‑sensitization was demonstrated for several HR proteins, in glioma cell lines proficient and mutated in p53. Evidence is provided showing that O6MeG is the primary lesion responsible for the increased sensitivity of glioblastoma cells following TMZ treatment, and that inhibition of the resistance marker MGMT restores the chemo‑sensitization achieved by HR down‑regulation. Data are also provided to show that inhibition of DNA‑PK dependent NHEJ does not significantly sensitized glioblastoma cells to TMZ treatment. Finally, the data also show that PARP inhibition with olaparib additionally sensitized HR down‑regulated glioma cells to TMZ. Collectively, the data show that processing of O6MeG through two rounds of DNA replication is required for DSB formation, checkpoint activation and apoptosis induction, and that O6MeG‑triggered apoptosis is also executed in subsequent generations. Furthermore, the data provide proof of principle evidence that down‑regulation of HR is a reasonable strategy for sensitizing glioma cells to killing by O6‑alkylating chemotherapeutics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bei stammzelltransplantierten Patienten, die ein Rezidiv ihrer Leukämie erleiden, kann eine Donor-Lymphozyten-Infusion (DLI) dauerhafte vollständige Leukämieremissionen induzieren. T-Zellen in der DLI vermitteln sowohl den potentiell kurativen Graft-versus-Leukaemia (GVL) Effekt, als auch die potentiell lebensbedrohliche Graft-versus-Host Disease (GVHD). Hingegen könnte die Infusion von leukämiereaktiven T-Zellen einen selektiven GVL Effekt und einen Langzeitschutz vor Rezidiven durch eine spezifisch gegen die Leukämie gerichtete Immunantwort und Immunität vermitteln. Unsere Arbeitsgruppe hat Protokolle zur in vitro Generierung leukämiereaktiver T-Zellen entwickelt, die hohe zytotoxische Aktivität gegen akute myeloische Leukämie-Blasten (AML) bei minimaler Reaktion auf mögliche GVHD Zielstrukturen zeigen. Für die klinische Anwendung sind diese Protokolle jedoch zu aufwändig, wobei vor allem eine erhebliche Verkürzung der Kulturzeit auf wenige Wochen erforderlich ist. Diese Verkürzung der in vitro Kulturzeit könnte das Wachstum von T-Zellen vom central memory oder frühen effector memory Phänotyp fördern, für die eine bessere in vivo Effektorfunktion und längere Persistenz im Rezipienten verglichen mit T-Zellen aus Langzeitkultur gezeigt werden konnte. Der Aktivierungsmarker und Kostimulations-Rezeptor CD137 kann zur Erkennung und Isolation antigenspezifischer T-Zellen genutzt werden, ohne dass dafür das von den T-Zellen erkannte Peptidepitop bekannt sein muss. Eine CD137-vermittelte Anreicherung mit Hilfe von clinical grade Materialien könnte verwendet werden, um DLI-Produkte mit leukämiespezifischen T-Zellen herzustellen, die sich sowohl durch eine effizientere T-Zell Generierung durch in vitro Selektion und Kostimulation, als auch durch eine verbesserte Spezifität des T-Zell-Produkts auszeichnen. Lymphozyten-Leukämie Cokulturen (mixed lymphocyte leukaemia cultures) wurden mit CD8 T-Zellen gesunder Spender und HLA-identischen oder einzel-HLA-mismatch AML-Blasten angesetzt und wöchentlich restimuliert. Nach zwei Wochen wurden die T-Zellen 12 Stunden nach Restimulation über den Marker CD137 positiv isoliert und anschließend separat weiterkultiviert. Die isolierten Fraktionen und unseparierten Kontrollen wurden im ELISPOT-Assay und im Chrom-Freisetzungstest an Tag 5 nach der Restimulation getestet. Es wurden keine konsistent nachweisbaren Vorteile im Hinblick auf Wachstum und Funktion der isolierten CD137-positiv Fraktion im Vergleich zur unseparierten Kontrolle gefunden. Verschiedene Isolationsmethoden, Patient-Spender-Systeme, Methoden zur Restimulation, Temperaturbedingungen, Zytokinkombinationen und Methoden der Zytokinzugabe sowie zusätzliche Feeder-Zellen oder AML-Blasten konnten Wachstum, funktionelle Daten und die deutlichen Zellverluste während der Isolation nicht entscheidend beeinflussen. Vitalfärbungen zeigten, dass aktivierungsinduzierter Zelltod CD137-positiver Zellen zu diesen Ergebnissen beitragen könnte. Im Gegensatz zur Stimulation mit AML-Blasten wurden erfolgreiche CD137-Anreicherungen für peptidstimulierte T-Zellen publiziert. Unterschiedliche CD137-Expressionskinetiken, aktivierungsinduzierter Zelltod und regulatorische T-Zellen sind mögliche Faktoren aufgrund derer die CD137-Anreicherung in diesem spezifischen Kontext ungeeinet sein könnte. Der stimulatorische Effekt eines CD137-Signals auf AML-reaktive CD8 T-Zellen wurde mit Hilfe von CD3/CD28 und CD3/CD28/CD137 Antikörper-beschichteten magnetischen beads untersucht. Für Nierenzellkarzinom-reaktive T-Zellen war die Stimulation mit CD3/CD28/CD137 beads genauso effektiv wie mit Tumorzellen und effektiver als mit CD3/CD28 beads. Beide Arten von beads waren für eine Stimulation während der ersten Wochen der Zellkultur geeignet, sodass ein zusätzliches CD137-Signal für die länger anhaltende Expansion tumorreaktiver T-Zellen zur klinischen Anwendung nützlich sein könnte. Die bead-Expansion veränderte die IFN-Sekretion im ELISPOT nicht, aber verursachte eine mäßige Verschlechterung der Zytotoxizität im Chrom-Freisetzungstest. Im Gegensatz dazu zeigten bei AML-reaktiven T-Zellen beide Arten von beads einen nicht apoptosevermittelten, dosisabhängigen zellschädigenden Effekt, der zu einer raschen Abnahme der Zellzahl in Kulturen mit beads führte. Unerwünschte Effekte auf die T-Zell-Funktionalität durch bead-Stimulation sind in der Literatur beschrieben, dennoch gibt es aktuell keine Veröffentlichungen, die eine fundierte Erklärung für den Effekt auf AML-reaktive T-Zellen bieten könnten. Abgesehen von Literaturdaten, die darauf hindeuten, dass CD137 ein vielversprechendes Kandidatenmolekül für die Anreicherung und Expansion von AML-reaktiven T-Zellen sein könnte, zeigen die eigenen Daten sowohl zur CD137-Isolation als auch zur bead-Stimulation, dass für diese spezielle Anwendung CD137 ein ungeeigneter Aktivierungsmarker und Kostimulations-Ligand ist.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SUMOylation is a highly dynamic and reversible posttranslational protein modification closely related to ubiquitination. SUMOylation regulates a vast array of different cellular functions, such as cell cycle, nuclear transport, DNA damage response, proliferation and transcriptional activation. Several groups have shown in in vitro studies how important SUMOylation is for early B cell development and survival as well as for later plasma cell differentiation. This thesis focuses on the deSUMOylation protease SENP1 and its in vivo effects on B cell development and differentiation. For this a conditional SENP1 knockout mouse model was crossed to the CD19-Cre mouse strain to generate a B cell specific SENP1 knockout mouse.rnIn our conditional SENP1ff CD19-Cre mouse model we observed normal numbers of all B cell subsets in the bone marrow. However in the spleen we observed an impairment of B cell survival, based on a 50% reduction of the follicular B cell compartment, whereas the marginal zone B cell compartment was unchanged. T cell numbers were comparable to control mice. rnFurther, impairments of B cell survival in SENP1ff CD19-Cre mice were analysed after in vivo blocking of IL7R signalling. The αIL7R treatment in mature mice blocked new B cell formation in the bone marrow and increased apoptosis rates could be observed in splenic SENP1 KO B cells. Additionally, a higher turnover rate of B cells was measured by in vivo BrdU incorporation.rnSince it is known that the majority of transcription factors that are important for the maintenance of the germinal centre reaction or for induction of plasma cell development are SUMOylated, the question arose, how defective deSUMOylation will manifest itself in these processes. The majority of in vitro cultured splenic B cells, stimulated to undergo class switch recombination and plasma cell differentiation underwent activation induced cell death. However, the surviving cells increasingly differentiated into IgM expressing plasma cells. Class switch recombination to IgG1 was reduced. These observations stood in line with observation made in in vivo sheep red blood cell immunization experiments, which showed increased amounts of germinal centres and germinal centre B cells, as well as increased amounts of plasma cells differentiation in combination with decreased class switch to IgG1.rnThese results lead to the conclusion that SENP1 KO B cells increasingly undergo apoptosis, however, B cells that survive SENP1 deficiency are more prone to undergo plasma cell differentiation. Further, the precursors of these plasma cells either are not as capable of undergoing class switch recombination or they do switch to IgG1 and succumb to activation induced cell death. One possible explanation for both scenarios could be a defective DNA damage response mechanisms during class switch recombination, caused by impaired deSUMOylation. rn