7 resultados para carbohydrate modification
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
In dieser Arbeit wurden durch Verwendung eines stereodifferenzierenden Kohlenhydrat-Auxiliars chirale Stickstoffheterocyclen und enantiomerenreine Piperidin-Alkaloide synthetisiert. Alkaloide mit einer Piperidin-Grundstruktur sind in der Natur weit verbreitet und weisen vielfältige biologische Aktivitäten auf. Zusammen mit synthetischen Derivaten sind sie daher von großem Interesse für die Wirkstoffforschung. Mit dem aus D-Arabinose zugänglichen 2,3,4-Tri-O-pivaloyl-D-arabinosylamin wurden mit hoher Stereoselektivität N-Glycosyl-dehydropiperidinone aufgebaut, die vielfältig modifizierbare Ausgangsverbindungen zur Synthese unterschiedlich substituierter Stickstoffheterocyclen darstellen. In einer Vielzahl vor allem metallorganischer Reaktionen waren regio- und stereoselektive Derivatisierungen an allen Positionen der N-glycosidisch gebundenen Dehydropiperidinone möglich. Durchgeführt wurden z. B. die Addition aktivierter Cuprate, elektrophile Substitutionen, Reduktionen, Iod-Magnesium-Austausch sowie palladium- und kupferkatalysierte Kupplungen. Die Kombination dieser Methoden führte zu mehrfach substituierten Piperidinen. In einer Ringschlussmetathese wurde zudem ein Zugang zu bicyclischen Heterocyclen geschaffen. Das Kohlenhydrat-Auxiliar steuert den stereochemischen Verlauf der Bildung der Dehydropiperidinone und der daran durchgeführten Funktionalisierungen. Die Konfigurationen der neu gebildeten Stereozentren wurden mittels Röntgenstrukturanalysen und NMR-Spektroskopie sowie durch die Überführung der Piperidin-Derivate in Alkaloide mit bekanntem Drehwert ermittelt. Die Stickstoffheterocyclen können nach Entfernen der Enamin-Doppelbindung durch milde Acidolyse vom Kohlenhydrat-Auxiliar abgespalten werden, wodurch man die enantiomerenreinen Alkaloide erhält.
Resumo:
The last decade has witnessed an exponential growth of activities in the field of nanoscience and nanotechnology worldwide, driven both by the excitement of understanding new science and by the potential hope for applications and economic impacts. The largest activity in this field up to date has been in the synthesis and characterization of new materials consisting of particles with dimensions in the order of a few nanometers, so-called nanocrystalline materials. [1-8] Semiconductor nanomaterials such as III/V or II/VI compound semiconductors exhibit strong quantum confinement behavior in the size range from 1 to 10 nm. Therefore, preparation of high quality semiconductor nanocrystals has been a challenge for synthetic chemists, leading to the recent rapid progress in delivering a wide variety of semiconducting nanomaterials. Semiconductor nanocrystals, also called quantum dots, possess physical properties distinctly different from those of the bulk material. Typically, in the size range from 1 to 10 nm, when the particle size is changed, the band gap between the valence and the conduction band will change, too. In a simple approximation a particle in a box model has been used to describe the phenomenon[9]: at nanoscale dimensions the degenerate energy states of a semiconductor separate into discrete states and the system behaves like one big molecule. The size-dependent transformation of the energy levels of the particles is called “quantum size-effect”. Quantum confinement of both the electron and hole in all three dimensions leads to an increase in the effective bandgap of the material with decreasing crystallite size. Consequently, both the optical absorption and emission of semiconductor nanaocrystals shift to the blue (higher energies) as the size of the particles gets smaller. This color tuning is well documented for CdSe nanocrystals whose absorption and emission covers almost the whole visible spectral range. As particle sizes become smaller the ratio of surface atoms to those in the interior increases, which has a strong impact on particle properties, too. Prominent examples are the low melting point [8] and size/shape dependent pressure resistance [10] of semiconductor nanocrystals. Given the size dependence of particle properties, chemists and material scientists now have the unique opportunity to change the electronic and chemical properties of a material by simply controlling the particle size. In particular, CdSe nanocrystals have been widely investigated. Mainly due to their size-dependent optoelectronic properties [11, 12] and flexible chemical processibility [13], they have played a distinguished role for a number of seminal studies [11, 12, 14, 15]. Potential technical applications have been discussed, too. [8, 16-27] Improvement of the optoelectronic properties of semiconductor nanocrystals is still a prominent research topic. One of the most important approaches is fabricating composite type-I core-shell structures which exhibit improved properties, making them attractive from both a fundamental and a practical point of view. Overcoating of nanocrystallites with higher band gap inorganic materials has been shown to increase the photoluminescence quantum yields by eliminating surface nonradiative recombination sites. [28] Particles passivated with inorganic shells are more robust than nanocrystals covered by organic ligands only and have greater tolerance to processing conditions necessary for incorporation into solid state structures or for other applications. Some examples of core-shell nanocrystals reported earlier include CdS on CdSe [29], CdSe on CdS, [30], ZnS on CdS, [31] ZnS on CdSe[28, 32], ZnSe on CdSe [33] and CdS/HgS/CdS [34]. The characterization and preparation of a new core-shell structure, CdSe nanocrystals overcoated by different shells (CdS, ZnS), is presented in chapter 4. Type-I core-shell structures as mentioned above greatly improve the photoluminescence quantum yield and chemical and photochemical stability of nanocrystals. The emission wavelengths of type-I core/shell nanocrystals typically only shows a small red-shift when compared to the plain core nanocrystals. [30, 31, 35] In contrast to type-I core-shell nanocrystals, only few studies have been conducted on colloidal type-II core/shell structures [36-38] which are characterized by a staggered alignment of conduction and valence bands giving rise to a broad tunability of absorption and emission wavelengths, as was shown for CdTe/CdSe core-shell nanocrystals. [36] The emission of type-II core/shell nanocrystals mainly originates from the radiative recombination of electron-hole pairs across the core-shell interface leading to a long photoluminescence lifetime. Type-II core/shell nanocrystals are promising with respect to photoconduction or photovoltaic applications as has been discussed in the literature.[39] Novel type-II core-shell structures with ZnTe cores are reported in chapter 5. The recent progress in the shape control of semiconductor nanocrystals opens new fields of applications. For instance, rod shaped CdSe nanocrystals can enhance the photo-electro conversion efficiency of photovoltaic cells, [40, 41] and also allow for polarized emission in light emitting diodes. [42, 43] Shape control of anisotropic nanocrystals can be achieved by the use of surfactants, [44, 45] regular or inverse micelles as regulating agents, [46, 47] electrochemical processes, [48] template-assisted [49, 50] and solution-liquid-solution (SLS) growth mechnism. [51-53] Recently, formation of various CdSe nanocrystal shapes has been reported by the groups of Alivisatos [54] and Peng, [55] respectively. Furthermore, it has been reported by the group of Prasad [56] that noble metal nanoparticles can induce anisotropic growth of CdSe nanocrystals at lower temperatures than typically used in other methods for preparing anisotropic CdSe structures. Although several approaches for anisotropic crystal growth have been reported by now, developing new synthetic methods for the shape control of colloidal semiconductor nanocrystals remains an important goal. Accordingly, we have attempted to utilize a crystal phase control approach for the controllable synthesis of colloidal ZnE/CdSe (E = S, Se, Te) heterostructures in a variety of morphologies. The complex heterostructures obtained are presented in chapter 6. The unique optical properties of nanocrystals make them appealing as in vivo and in vitro fluorophores in a variety of biological and chemical investigations, in which traditional fluorescence labels based on organic molecules fall short of providing long-term stability and simultaneous detection of multiple emission colours [References]. The ability to prepare water soluble nanocrystals with high stability and quantum yield has led to promising applications in cellular labeling, [57, 58] deep-tissue imaging, [59, 60] and assay labeling [61, 62]. Furthermore, appropriately solubilized nanocrystals have been used as donors in fluorescence resonance energy transfer (FRET) couples. [63-65] Despite recent progress, much work still needs to be done to achieve reproducible and robust surface functionalization and develop flexible (bio-) conjugation techniques. Based on multi-shell CdSe nanocrystals, several new solubilization and ligand exchange protocols have been developed which are presented in chapter 7. The organization of this thesis is as follows: A short overview describing synthesis and properties of CdSe nanocrystals is given in chapter 2. Chapter 3 is the experimental part providing some background information about the optical and analytical methods used in this thesis. The following chapters report the results of this work: synthesis and characterization of type-I multi-shell and type-II core/shell nanocrystals are described in chapter 4 and chapter 5, respectively. In chapter 6, a high–yield synthesis of various CdSe architectures by crystal phase control is reported. Experiments about surface modification of nanocrystals are described in chapter 7. At last, a short summary of the results is given in chapter 8.
Resumo:
Drosophila melanogaster enthält eine geringe Menge an 5-methyl-Cytosin. Die von mir untersuchte männliche Keimbahn von Drosophila weist jedoch keine nachweisbaren Mengen an DNA-Methylierung auf. Eine künstliche Expression der murinen de novo Methyltransferasen, DNMT3A und DNMT3B1, in den Fliegenhoden, führte nicht zu der erwarteten Methylierungszunahme und hatte keinen Effekt auf die Fruchtbarkeit der Männchen. Auch die gewebespezifische Expression unter der Verwendung des UAS/GAL4-Systems zeigte keine phenotypischen Veränderungen. Hingegen fanden wir auf Protein-Ebene des Chromatins von D. melanogaster und D. hydei spezifische Modifikationsmuster der Histone H3 und H4 in der Keimbahn, wie auch in den somatischen Zellen des Hodenschlauches. Die Modifikationsmuster der beiden Zelltypen unterscheiden sich grundlegend und weichen zudem von dem für Eu- und Heterochromatin erwarteten ab, was auf eine größere Komplexität des „Histon-Codes“ als angenommen hindeutet. Folglich liegt die epigenetische Information in Drosophila wahrscheinlich anstatt auf DNA- auf Protein-Ebene, wodurch Genexpression über die Chromatinstruktur reguliert wird. Es wurde gezeigt, dass der Transkriptionsfaktor E2F, der eine Schlüsselfunktion im Zellzyklus hat, durch unterschiedliche Transkripte offenbar quantitativ reguliert wird. Unsere Nachforschungen ergaben, dass die drei E2F1 Genprodukte in Drosophila neben ihrer Zellspezifität auch in unterschiedlichen Expressionsniveaus auftreten, was die Annahme einer quantitativen Expression unterstützt. Die verschiedenen Funktionen der multiplen Gene in Säugern, könnten so funktionell kompensiert werden. Die durch die Expression dreier dE2F1-Transkripte vermutete Synthese verschiedener Proteine konnte nicht bewiesen werden.
Resumo:
Polyamine polymers have attracted attention due to their ability to demonstrate pH dependent cationic nature and presence of highly reactive pendant amino groups. These amino groups make them suitable for a host of applications through cross-linking and derivatization. As a result the end use application of a polyamine is largely driven by the number of amino groups and the way they are attached to the polymer backbone. Thus, this piece of work describes the synthesis and investigation of properties of a novel aliphatic polyamine, poly(methylene amine); that carries maximum number of amino group on its backbone. The target polymer, poly(methylene amine); was synthesized via two major steps viz.1.synthesis of precursor polymers of poly(methylene amine) and 2. Hydrolysis of the precursor polymers to obtain poly(methylene amine). The precursor polymers poly (1,3-diacetylimidazole-2-one)(6) and poly(1,3-diformyldihydroimidazol-2-one)(7) were synthesized via radical polymerization of their respective monomers. The monomers were polymerized in bulk as well as in solution at different reaction conditions. The maximum molecular weights were achieved by polymerizing the monomers in bulk (Mn = 6.5 x 104 g/mol and Mw = 2.13 x 105 g/mol) of 6. The precursor polymers were hydrolyzed under strong reaction conditions in ethanol in presence of NaOH, LiCl at 170°C to yield poly(methylene amine). The process of hydrolysis was monitored by IR spectroscopy. The solution properties of poly(methylene amine) and its hydrochloride were investigated by viscosimetry and light scattering. The reduced viscosity of poly (methylene amine) hydrochloride as a function of polymer concentration demonstrated a behavior typical of cationic polyelectrolyte. With decrease in polymer concentration the reduced viscosity of poly(methylene amine) hydrochloride increased gradually. The dynamic light scattering studies also revealed behaviors of a polyelectrolyte. Poly(methylene amine) was reacted with electrophiles to yield novel materials. While the attachment of alkyl group onto the nitrogen would increase nucleophilicity, it would also impose steric hindrance. As a result the degree of substitution on poly(methylene amine) would be governed by both the factors. Therefore, few model reactions with electrophiles were performed on polvinylamine under similar reaction conditions in order to make a comparative evaluation. It was found that under similar reaction conditions the degree of substitution was higher in case of polyvinylamine in comparison with poly (methylene amine).This shows that the steric hindrance outweighs nucleophilicity while deciding degree of substitution of electrophiles on poly(methylene amine). The modification was further extended to its use as an initiator for ring opening polymerization of benzyloxy protected N-carboxyanhydride of z-Lysine. The resulting polymer had an interesting brush like architecture. The solid state morphology of this polymer was investigated by SAXS. The 2D-WAXS diffractograms revealed hexagonal morphology of peptide segments without formation of alpha helices.
Synthetische Glycopeptide mit Sulfatyl-Lewis X-Struktur als potenzielle Inhibitoren der Zelladhäsion
Resumo:
Zelladhäsionsprozesse sind von großer Bedeutung für zahlreiche biologische Prozesse, wie etwa die Immunantwort, die Wundheilung und die Embryogenese. Außerdem spielen sie eine entscheidende Rolle im Verlauf inflammatorischer Prozesse. An der Zelladhäsion sind verschiedene Klassen von Adhäsionsmolekülen beteiligt. Die erste leichte „rollende“ Adhäsion von Leukozyten am Ort einer Entzündung wird durch die Selektine vermittelt. Diese binden über die Kohlenhydrat-Strukturen Sialyl-Lewisx und Sialyl-Lewisa über eine calciumabhängige Kohlenhydrat-Protein-Bindung an ihre spezifischen Liganden und vermitteln so den ersten Zellkontakt, bevor andere Adhäsionsmoleküle (Cadherine, Integrine) die feste Adhäsion und den Durchtritt durch das Endothel bewirken. Bei einer pathogenen Überexpression der Selektine kommt es jedoch zu zahlreichen chronischen Erkrankungen wie z. B. rheumatoider Arthritis, Erkrankungen der Herzkranzgefäße oder dem Reperfusions-syndrom. Außerdem wird eine Beteiligung der durch die Selektine vermittelten Zellkontakte bei der Metastasierung von Karzinomzellen angenommen. Ein Ansatzpunkt für die Behandlung der oben genannten Erkrankungen ist die Gabe löslicher kompetitiver Inhibitoren für die Selektine. Ziel der Arbeit war die Modifikation des Sialyl-Lewisx-Leitmotivs zur Steigerung der metabolischen Stabilität und dessen Einbau in die Peptidsequenz aus der für die Bindung verantwortlichen Domäne des endogenen Selektin-Liganden PSGL-1. Dazu wurden mit einer modifizierten Lewisx-Struktur glycosylierte Aminosäurebausteine dargestellt (Abb.1). Die Verwendung von Arabinose und des Sulfatrestes anstelle von Fusose und Sialinsäure sollte außerdem zu einer gesteigerten metabolischen Stabilität des synthetischen Liganden beitragen. Die so erhaltenen Glycosylaminosäuren sollten nun in die Festphasenpeptidsynthese eingesetzt werden. Aufgrund der großen säurelabilität konnte hier nicht auf das Standartverfahren (Wang-Harz, Abspaltung mit TFA) zurückgegriffen werden. Deshalb kam ein neuartiges UV-labiles Ankersystem zum Einsatz. Dazu wurde ein Protokoll für die Synthese und Abspaltung von Peptiden an diesem neuen System entwickelt. Daran gelang die Synthese des nichtglycosylierten Peptidrückgrats sowie eines mit der dem sulfatierten Lewisx-Motiv versehenen Glycopeptids. Ein vierfach sulfatiertes Glycopeptid, welches durch den Einsatz von im Vorfeld chemisch sulfatierer Tyrosin-Bausteinen dargestellt werden sollte, konnte massenspektrometrisch nachgewiesen werden.
Resumo:
Das Ziel dieser Arbeit lag darin mannosylierte Polymersysteme hauptsächlich auf der Basis von N-(Hydroxy)propylmethacrylat zu synthetisieren, um gezielt Zellen des Immunsystems zu adressieren. Dazu wurden zunächst verschiedene Reaktivesterpolymere auf der Basis von Pentafluorophenylmethacrylat (PFPMA) unter Verwendung der RAFT-Polymerisation mit enger Molekulargewichtsverteilung und unterschiedlichen Anteilen an LMA (Laurylmethacrylat) hergestellt.rnUm eine genaue Aussage über den Aufbau eines statistischen PFPMA-LMA Copolymers treffen zu können, wurde die Copolymerisation von PFPMA und LMA mittels Echtzeit 1H-NMR Kinetikmessungen untersucht. Dies ermöglichte es, die Copolymerisationsparameter zu berechnen und genaue Aussagen über den Aufbau eines statistischen PFPMA-LMA Copolymers zu treffen. Die so erhaltenen Reaktivesterpolymere wurden dann in einer polymeranalogen Reaktion unter Erhalt des Polymerisationsgrades in die gewünschten HPMA-Polymere umgewandelt. Um die quantitative Umsetzung ohne auftretende Nebenreaktionen zu untersuchen, wurden verschiedene Reaktionsbedingungen gewählt und unterschiedliche Analysemethoden verwendet. Damit konnte gezeigt werden, dass es möglich ist, über den Reaktivesteransatz qualitativ hochwertige amphiphile Polymersysteme herzustellen, die auf anderen Wegen schwer zu synthetisieren und charakterisieren sind. Ein weiterer Vorteil dieser Syntheseroute ist, dass gleichzeitig sowohl Marker für die Visualisierung der Polymere in vitro und in vivo, als auch Targetliganden für die Adressierung bestimmter Zellen eingeführt werden können. Dafür wurde hauptsächlich Mannose als einfache Zuckerstruktur angebunden, da bekannt ist, dass mannosylierte Polymersysteme von Zellen des Imunsystems aufgenommen werden. Zusätzlich konnten die mannosylierten Polymere mit hydrophobem Wirkstoff beladen werden, wobei die Stabilität von beladenen Mizellen anhand der Einlagerung eines hydrophoben radioaktiven Komplexes genauer untersucht werden konnte.rnAnschließende in vitro Experimente der mannosylierten Polymermizellen an dendritischen Zellen zeigten wie erwartet eine mannosespezifische und verstärkte Aufnahme. Für eine mögliche Untersuchung dieser Systeme in vivo mittels PET konnte gezeigt werden, dass es möglich ist HPMA Polymere radioaktiv zu markieren, wobei auch erste Markierungsversuche mit einem langlebigen Radionuklid für Langzeitbiodistributionsstudien durchgeführt werden konnte.rn