4 resultados para bulk water

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the basic concepts of molecular self-assembly is that the morphology of the aggregate is directly related to the structure and interaction of the aggregating molecules. This is not only true for the aggregation in bulk solution, but also for the formation of Langmuir films at the air/water interface. Thus, molecules at the interface do not necessarily form flat monomolecular films but can also aggregate into multilayers or surface micelles. In this context, various novel synthetic molecules were investigated in terms of their morphology at the air/water interface and in transferred films. rnFirst, the self-assembly of semifluorinated alkanes and their molecular orientation at the air/water interface and in transferred films was studied employing scanning force microscopy (SFM) and Kelvin potential force microscopy. Here it was found, that the investigated semifluorinated alkanes aggregate to form circular surface micelles with a diameter of 30 nm, which are constituted of smaller muffin-shaped subunits with a diameter of 10 nm. A further result is that the introduction of an aromatic core into the molecular structure leads to the formation of elongated surface micelles and thus implements a directionality to the self-assembly. rnSecond, the self-assembly of two different amphiphilic hybrid materials containing a short single stranded desoxyribonucleic acid (DNA) sequence was investigated at the air/water interface. The first molecule was a single stranded DNA (11mer) molecule with two hydrophobically modified 5-(dodec-1-ynyl)uracil nucleobases at the terminal 5'-end of the oligonucleotide sequence. Isotherm measurements revealed the formation of semi-stable films at the air/water interface. SFM imaging of films transferred via Langmuir-Blodgett technique supported this finding and indicated mono-, bi- and multilayer formation, according to the surface pressure applied upon transfer. Within these films, the hydrophilic DNA sequence was oriented towards air covering 95% of the substrate.rnSimilar results were obtained with a second type of amphiphile, a DNA block copolymer. Furthermore, the potential to perform molecular recognition experiments at the air/water interface with these DNA hybrid materials was evaluated.rnThird, polyglycerol ester molecules (PGE), which are known to form very stable foams, were studies. Aim was to elucidate the molecular structure of PGE molecules at the air/water interface in order to comprehend the foam stabilization mechanism. Several model systems mimicking the air/water interface of a PGE foam and methods for a noninvasive transfer were tested and characterized by SFM. It could be shown, that PGE stabilizes the air/water interface of a foam bubble by formation of multiple surfactant layers. Additionally, a new transfer technique, the bubble film transfer was established and characterized by high speed camera imaging.The results demonstrate the diversity of structures, which can be formed by amphiphilic molecules at the air/water interface and after film transfer, as well as the impact of the chemical structure on the aggregate morphology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Amphiphile Peptide, Pro-Glu-(Phe-Glu)n-Pro, Pro-Asp-(Phe-Asp)n-Pro, und Phe-Glu-(Phe-Glu)n-Phe, können so aus n alternierenden Sequenzen von hydrophoben und hydrophilen Aminosäuren konstruiert werden, dass sie sich in Monolagen an der Luft-Wasser Grenzfläche anordnen. In biologischen Systemen können Strukturen an der organisch-wässrigen Grenzfläche als Matrix für die Kristallisation von Hydroxyapatit dienen, ein Vorgang der für die Behandlung von Osteoporose verwendet werden kann. In der vorliegenden Arbeit wurden Computersimulationenrneingesetzt, um die Strukturen und die zugrunde liegenden Wechselwirkungen welche die Aggregation der Peptide auf mikroskopischer Ebene steuern, zu untersuchen. Atomistische Molekulardynamik-Simulationen von einzelnen Peptidsträngen zeigen, dass sie sich leicht an der Luft-Wasser Grenzfläche anordnen und die Fähigkeit haben, sich in β-Schleifen zu falten, selbst für relativ kurze Peptidlängen (n = 2). Seltene Ereignisse wie diese (i.e. Konformationsänderungen) erfordern den Einsatz fortgeschrittener Sampling-Techniken. Hier wurde “Replica Exchange” Molekulardynamik verwendet um den Einfluss der Peptidsequenzen zu untersuchen. Die Simulationsergebnisse zeigten, dass Peptide mit kürzeren azidischen Seitenketten (Asp vs. Glu) gestrecktere Konformationen aufwiesen als die mit längeren Seitenketten, die in der Lage waren die Prolin-Termini zu erreichen. Darüber hinaus zeigte sich, dass die Prolin-Termini (Pro vs. Phe) notwendig sind, um eine 2D-Ordnung innerhalb derrnAggregate zu erhalten. Das Peptid Pro-Asp-(Phe-Asp)n-Pro, das beide dieser Eigenschaften enthält, zeigt das geordnetste Verhalten, eine geringe Verdrehung der Hauptkette, und ist in der Lage die gebildeten Aggregate durch Wasserstoffbrücken zwischen den sauren Seitenketten zu stabilisieren. Somit ist dieses Peptid am besten zur Aggregation geeignet. Dies wurde auch durch die Beurteilung der Stabilität von experimentnah-aufgesetzten Peptidaggregaten, sowie der Neigung einzelner Peptide zur Selbstorganisation von anfänglich ungeordneten Konfigurationen unterstützt. Da atomistische Simulationen nur auf kleine Systemgrößen und relativ kurze Zeitskalen begrenzt sind, wird ein vergröbertes Modell entwickelt damit die Selbstorganisation auf einem größeren Maßstab studiert werden kann. Da die Selbstorganisation an der Grenzfläche vonrnInteresse ist, wurden existierenden Vergröberungsmethoden erweitert, um nicht-gebundene Potentiale für inhomogene Systeme zu bestimmen. Die entwickelte Methode ist analog zur iterativen Boltzmann Inversion, bildet aber das Update für das Interaktionspotential basierend auf der radialen Verteilungsfunktion in einer Slab-Geometrie und den Breiten des Slabs und der Grenzfläche. Somit kann ein Kompromiss zwischen der lokalen Flüssigketsstruktur und den thermodynamischen Eigenschaften der Grenzfläche erreicht werden. Die neue Methode wurde für einen Wasser- und einen Methanol-Slab im Vakuum demonstriert, sowie für ein einzelnes Benzolmolekül an der Vakuum-Wasser Grenzfläche, eine Anwendung die von besonderer Bedeutung in der Biologie ist, in der oft das thermodynamische/Grenzflächenpolymerisations-Verhalten zusätzlich der strukturellen Eigenschaften des Systems erhalten werden müssen. Daraufrnbasierend wurde ein vergröbertes Modell über einen Fragment-Ansatz parametrisiert und die Affinität des Peptids zur Vakuum-Wasser Grenzfläche getestet. Obwohl die einzelnen Fragmente sowohl die Struktur als auch die Wahrscheinlichkeitsverteilungen an der Grenzfläche reproduzierten, diffundierte das Peptid als Ganzes von der Grenzfläche weg. Jedoch führte eine Reparametrisierung der nicht-gebundenen Wechselwirkungen für eines der Fragmente der Hauptkette in einem Trimer dazu, dass das Peptid an der Grenzfläche blieb. Dies deutet darauf hin, dass die Kettenkonnektivität eine wichtige Rolle im Verhalten des Petpids an der Grenzfläche spielt.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The adsorption of particles and surfactants at water-oil interfaces has attracted continuous attention because of its emulsion stabilizing effect and the possibility to form two-dimensional materials. Herein, I studied the interfacial diffusion of single molecules and nanoparticles at water-oil interfaces using fluorescence correlation spectroscopy. rnrnFluorescence correlation spectroscopy (FCS) is a promising technique to study diffusion of fluorescent tracers in diverse conditions. This technique monitors and analyzes the fluorescence fluctuation caused by single fluorescent tracers coming in and out of a diffraction-limited observation volume “one at a time”. Thus, this technique allows a combination of high precision, high spatial resolution and low tracer concentration. rnrnIn chapter 1, I discussed some controversial questions regarding the properties of water-hydrophobic interfaces and also introduced the current progress on the stability and dynamic of single nanoparticles at water-oil interfaces. The materials and setups I used in this thesis were summarized in chapter 2. rnrnIn chapter 3, I presented a new strategy to study the properties of water-oil interfaces. The two-dimensional diffusion of isolated molecular tracers at water/n-alkane interfaces was measured using fluorescence correlation spectroscopy. The diffusion coefficients of larger tracers with a hydrodynamic radius of 4.0 nm agreed well with the values calculated from the macroscopic viscosities of the two bulk phases. However, for small molecule tracers with hydrodynamic radii of only 1.0 and 0.6 nm, notable deviations were observed, indicating the existence of an interfacial region with a reduced effective viscosity. rnrnIn chapter 4, the interfacial diffusion of nanoparticles at water-oil interfaces was investigated using FCS. In stark contrast to the interfacial diffusion of molecular tracers, that of nanoparticles at any conditions is slower than the values calculated in accordance to the surrounding viscosity. The diffusion of nanoparticles at water-oil interfaces depended on the interfacial tension of liquid-liquid interfaces, the surface properties of nanoparticles, the particle sizes and the viscosities of surrounding liquid phases. In addition, the interfacial diffusion of nanoparticles with Janus motif is even slower than that of their symmetric counterparts. Based on the experimental results I obtained, I drew some possibilities to describe the origin of nanoparticle slowdown at water-oil interfaces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ziel der vorliegenden Dissertation war es, Einblicke in das Kristallisationsverhalten weicher Materie („soft matter“), wie verschiedener Polymere oder Wasser, unter räumlicher Einschränkung („confinement“) zu erlangen. Dabei sollte untersucht werden, wie, weshalb und wann die Kristallisation in nanoporösen Strukturen eintritt. Desweiteren ist Kristallisation weicher Materie in nanoporösen Strukturen nicht nur aus Aspekten der Grundlagenforschung von großem Interesse, sondern es ergeben sich zahlreiche praktische Anwendungen. Durch die gezielte Steuerung der Kristallinität von Polymeren könnten somit Materialien mit verschiendenen mechanischen und optischen Eigenschaften erhalten werden. Desweiteren wurde auch räumlich eingeschränktes Wasser untersucht. Dieses spielt eine wichtige Rolle in der Molekularbiologie, z.B. für das globuläre Protein, und als Wolkenkondensationskeime in der Atmosphärenchemie und Physik. Auch im interstellaren Raum ist eingeschränktes Wasser in Form von Eispartikeln anzutreffen. Die Kristallisation von eingeschränktem Wasser zu verstehen und zu beeinflussen ist letztlich auch für die Haltbarkeit von Baumaterialien wie etwa Zement von großem Interesse.rnUm dies zu untersuchen wird Wasser in der Regel stark abgekühlt und das Kristallisationsverhalten in Abhängigkeit des Volumens untersucht. Dabei wurde beobachtet, dass Mikro- bzw. Nanometer große Volumina erst ab -38 °C bzw. -70 °C kristallisieren. Wasser unterliegt dabei in der Regel dem Prozess der homogenen Nukleation. In der Regel gefriert Wasser aber bei höheren Temperaturen, da durch Verunreinigungen eine vorzeitige, heterogene Nukleation eintritt.rnDie vorliegende Arbeit untersucht die sachdienlichen Phasendiagramme von kristallisierbaren Polymeren und Wasser unter räumlich eingeschränkten Bedingungen. Selbst ausgerichtetes Aluminiumoxid (AAO) mit Porengrößen im Bereich von 25 bis 400 nm wurden als räumliche Einschränkung sowohl für Polymere als auch für Wasser gewählt. Die AAO Nanoporen sind zylindrisch und parallel ausgerichtet. Außerdem besitzen sie eine gleichmäßige Porenlänge und einen gleichmäßigen Durchmesser. Daher eignen sie sich als Modelsystem um Kristallisationsprozesse unter wohldefinierter räumlicher Einschränkung zu untersuchen.rnEs wurden verschiedene halbkristalline Polymere verwendet, darunter Poly(ethylenoxid), Poly(ɛ-Caprolacton) und Diblockcopolymere aus PEO-b-PCL. Der Einfluss der Porengröße auf die Nukleation wurde aus verschiedenen Gesichtspunkten untersucht: (i) Einfluss auf den Nukleationmechanismus (heterogene gegenüber homogener Nukleation), (ii) Kristallorientierung und Kristallinitätsgrad und (iii) Zusammenhang zwischen Kristallisationstemperatur bei homogener Kristallisation und Glasübergangstemperatur.rnEs konnte gezeigt werden, dass die Kristallisation von Polymeren in Bulk durch heterogene Nukleation induziert wird und das die Kristallisation in kleinen Poren hauptsächlich über homogene Nukleation mit reduzierter und einstellbarer Kristallinität verläuft und eine hohe Kristallorientierung aufweist. Durch die AAOs konnte außerdem die kritische Keimgröße für die Kristallisation der Polymere abgeschätzt werden. Schließlich wurde der Einfluss der Polydispersität, von Oligomeren und anderen Zusatzstoffen auf den Nukleationsmechanismus untersucht.rn4rnDie Nukleation von Eis wurde in den selben AAOs untersucht und ein direkter Zusammenhang zwischen dem Nukleationstyp (heterogen bzw. homogen) und der gebildeten Eisphase konnte beobachtet werden. In größeren Poren verlief die Nukleation heterogen, wohingegen sie in kleineren Poren homogen verlief. Außerdem wurde eine Phasenumwandlung des Eises beobachtet. In den größeren Poren wurde hexagonales Eis nachgewiesen und unter einer Porengröße von 35 nm trat hauptsächlich kubisches Eis auf. Nennenswerter Weise handelte es sich bei dem kubischem Eis nicht um eine metastabile sondern eine stabile Phase. Abschließend wird ein Phasendiagramm für räumlich eingeschränktes Wasser vorgeschlagen. Dieses Phasendiagramm kann für technische Anwendungen von Bedeutung sein, so z.B. für Baumaterial wie Zement. Als weiteres Beispiel könnten AAOs, die die heterogene Nukleation unterdrücken (Porendurchmesser ≤ 35 nm) als Filter für Reinstwasser zum Einsatz kommen.rnNun zur Anfangs gestellten Frage: Wie unterschiedlich sind Wasser und Polymerkristallisation voneinander unter räumlicher Einschränkung? Durch Vergleich der beiden Phasendiagramme kommen wir zu dem Schluss, dass beide nicht fundamental verschieden sind. Dies ist zunächst verwunderlich, da Wasser ein kleines Molekül ist und wesentlich kleiner als die kleinste Porengröße ist. Wasser verfügt allerdings über starke Wasserstoffbrückenbindungen und verhält sich daher wie ein Polymer. Daher auch der Name „Polywasser“.