3 resultados para brain cortex
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
The submitted work concentrated on the study of mRNA expression of two distinct GABA transporters, GAT-1 and GAT-3, in the rat brain. For the detection and quantification of the chosen mRNAs, appropriate methods had to be established. Two methods, ribonuclease protection assay (RPA) and competitive RT-PCR were emloyed in the present study. Competitive RT-PCR worked out to be 20 times more sensitive as RPA. Unlike the sensitivity, the fidelity of both techniques was comparable with respect to their intra- and inter-assay variability.The basal mRNA levels of GAT-1 and GAT-3 were measured in various brain regions. Messenger RNAs for both transporters were detected in all tested brain regions. Depending on the region, the observed mRNA level for GAT-1 was 100-300 higher than for GAT-3. The GAT-1 mRNA levels were similar in all tested regions. The distribution of GAT-3 mRNA seemed to be more region specific. The strongest GAT-3 mRNA expression was detected in striatum, medulla oblongata and thalamus. The lowest levels of GAT-3 were in cortex frontalis and cerebellum.Furthermore, the mRNA expression for GAT-1 and GAT-3 was analysed under altered physiological conditions; in kindling model of epilepsy and also after long-term treatment drugs modulating GABAergic transmission. In kindling model of epilepsy, altered GABA transporter function was hypothesised by During and coworkers (During et al., 1995) after observed decrease in binding of nipecotic acid, a GAT ligand, in hippocampus of kindled animals. In the present work, the mRNA levels were measured in hippocampus and whole brain samples. Neither GAT-1 nor GAT-3 showed altered transcription in any tested region of kindled animals compared to controls. This leads to conclusion that an altered functionality of GABA transporters is involved in epilepsy rather than a change in their expression.The levels of GAT-1 and GAT-3 mRNAs were also measured in the brain of rats chronically treated with diazepam or zolpidem, GABAA receptor agonists. Prior to the molecular biology tests, behavioural analysis was carried out with chronically and acutely treated animals. In two tests, open field and elevated plus-maze, the basal activity exploration and anxiety-like behaviour were analysed. Zolpidem treatment increased exploratory activity. There were observed no differencies between chronically and acutely treated animals. Diazepam increased exploratory activity and decresed anxiety-like behaviour when applied acutely. This effect disappeard after chronic administration of diazepam. The loss of effect suggested a development of tolerance to effects of diazepam following long-term administration. Double treatment, acute injection of diazepam after chronic diazepam treatment, confirmed development of a tolerance to effects of diazepam. Also, the mRNAs for GAT-1 and GAT-3 were analysed in cortex frontalis, hippocampus, cerebellum and whole brain samples of chronically treated animals. The mRNA levels for any of tested GABA transporters did not show significant changes in any of tested region neither after diazepam nor zolpidem treatment. Therefore, changes in GAT-1 and GAT-3 transcription are probably not involved in adaptation of GABAergic system to long-term benzodiazepine administration and so in development of tolerance to benzodiazepines.
Resumo:
During the perinatal period the developing brain is most vulnerable to inflammation. Prenatal infection or exposure to inflammatory factors can have a profound impact on fetal neurodevelopment with long-term neurological deficits, such as cognitive impairment, learning deficits, perinatal brain damage and cerebral palsy. Inflammation in the brain is characterized by activation of resident immune cells, especially microglia and astrocytes whose activation is associated with a variety of neurodegenerative disorders like Alzheimer´s disease and Multiple sclerosis. These cell types express, release and respond to pro-inflammatory mediators such as cytokines, which are critically involved in the immune response to infection. It has been demonstrated recently that cytokines also directly influence neuronal function. Glial cells are capable of releaseing the pro-inflammatory cytokines MIP-2, which is involved in cell death, and tumor necrosis factor alpha (TNFalpha), which enhances excitatory synaptic function by increasing the surface expression of AMPA receptors. Thus constitutively released TNFalpha homeostatically regulates the balance between neuronal excitation and inhibition in an activity-dependent manner. Since TNFalpha is also involved in neuronal cell death, the interplay between neuronal activity MIP-2 and TNFalpha may control the process of cell death and cell survival in developing neuronal networks. An increasing body of evidence suggests that neuronal activity is important in the regulation of neuronal survival during early development, e.g. programmed cell death (apoptosis) is augmented when neuronal activity is blocked. In our study we were interested on the impact of inflammation on neuronal activity and cell survival during early cortical development. To address this question, we investigated the impact of inflammation on neuronal activity and cell survival during early cortical development in vivo and in vitro. Inflammation was experimentally induced by application of the endotoxin lipopolysaccharide (LPS), which initiates a rapid and well-characterized immune response. I studied the consequences of inflammation on spontaneous neuronal network activity and cell death by combining electrophysiological recordings with multi-electrode arrays and quantitative analyses of apoptosis. In addition, I used a cytokine array and antibodies directed against specific cytokines allowing the identification of the pro-inflammatory factors, which are critically involved in these processes. In this study I demonstrated a direct link between inflammation-induced modifications in neuronal network activity and the control of cell survival in a developing neuronal network for the first time. Our in vivo and in vitro recordings showed a fast LPS-induced reduction in occurrence of spontaneous oscillatory activity. It is indicated that LPS-induced inflammation causes fast release of proinflammatory factors which modify neuronal network activity. My experiments with specific antibodies demonstrate that TNFalpha and to a lesser extent MIP-2 seem to be the key mediators causing activity-dependent neuronal cell death in developing brain. These data may be of important clinical relevance, since spontaneous synchronized activity is also a hallmark of the developing human brain and inflammation-induced alterations in this early network activity may have a critical impact on the survival of immature neurons.
Resumo:
Der visuelle Kortex ist eine der attraktivsten Modellsysteme zur Untersuchung der molekularen Mechanismen der synaptischen Plastizität im Gehirn. Es hat sich gezeigt, dass der Wachstumsfaktor brain-derived-neurotrophic-factor (BDNF) und die GABAerge Hemmung während der Entwicklung eine essentielle Funktion in der Regulierung der synaptischen Plastizität im visuellen Kortex besitzen. BDNF bindet u.a. an TrkB Rezeptoren, die das Signal intrazellular an unterschiedliche Effektormoleküle weiter vermitteln. Außer BDNF sind auch andere TrkB-Rezeptor Agonisten in der Literatur beschrieben. Einer davon ist das kürzlich identifizierte Flavonoid 7,8-Dihydroxyflavone (7,8-DHF), welchem eine neurotrophe Wirkung zugeschrieben wird. Im ersten Abschnitt der vorliegenden Doktorarbeit wurde der Effekt dieses Agonisten auf die synaptische Übertragung und intrinsischen Zelleigenschaften im visuellen Kortex der Maus untersucht. Dies wurde mit Hilfe der whole-cell patch clamp Methode durchgeführt, wobei die synaptischen Eingänge der Pyramidalzellen der kortikalen Schicht 2/3 von besonderem Interesse waren.rnEine 30 minütige Inkubationszeit der kortikalen Schnitte mit 7,8 DHF (20µM) erzielte eine signifikante Reduktion der GABAergen Hemmung, während die glutamaterge synaptische Übertragung unverändert blieb. Des weiteren konnte in Gegenwart von 7,8 DHF eine Veränderung der intrinsischen neuronalen Zellmembraneigenschaften beobachtet werden. Dies wurde deutlich in der Erhöhung des Eingangwiderstandes und der Frequenz der induzierten Aktionspotentiale. Die chronische Applikation von 7,8 DHF in vivo bestätigte die selektive Wirkung von 7,8 DHF auf das GABAerge System. rnDie Rolle des BDNF-TrkB-Signalweges in der GABAergen Hemmung nach kortikalen Verletzungen ist bisher wenig verstanden. Eine häufig beschriebene elektrophysiologische Veränderung nach kortikaler Verletzung ist eine Reduktion in der GABAergen Hemmung. Im zweiten Abschnitt dieser Doktorarbeit wurde hierzu die Funktion des BDNF-TrkB-Signalweges auf die GABAerge Hemmung nach kortikaler Verletzung untersucht. Es wurde ein "ex-vivo/in-vitro“ Laser-Läsions Modell verwendet, wobei mittels eines Lasers im visuellen Kortex von WT und heterozygoten BDNF (+/−) Mäusen eine definierte, reproduzierbare Läsion induziert wurde. Nachfolgende elektrophysiologische Messungen ergaben, dass die Auswirkung einer Verletzung des visuellen Kortex auf die GABAerge Funktion signifikant von der basalen BDNF Konzentration im Kortex abhängt. Des weiteren konnte beobachtet werden, dass nach kortikaler Verletzung in WT Mäusen sowohl die Frequenz der basalen inhibitorischen, postsynaptischen Potentiale (mIPSCs) reduziert war, als auch ein erhöhtes Paired-Pulse Verhältnis vorlag. Diese Ergebnisse deuten auf Veränderungen der präsynaptischen Funktion inhibitorischer Synapsen auf Pyramidalneurone hin. Im Gegensatz dazu konnte in BDNF (+/−) mice Mäusen eine erhöhte und gleichzeitig verlängerte mIPSC-Amplitude beobachtet werden, induziert durch Reizung afferenter Nervenfasern. Hieraus lässt sich schließen, dass kortikale Verletzungen in BDNF (+/−) mice Mäusen Auswirkungen auf die Eigenschaften von postsynaptischen GABAA-Rezeptoren haben. Die nachfolgende Gabe eines TrkB-Rezeptor Antagonisten bestätigte diese Ergebnisse für das GABAerge System post-Läsion. Dies zeigt auch, dass die Änderungen der synaptischen Hemmung nicht auf eine Reduktion der BDNF-Konzentration zurückzuführen sind. Zusammengefasst zeigen die Ergebnisse der vorliegenden Arbeit, dass der BDNF-TrkB Signalweg eine wichtige Rolle in der Reorganisation der GABAergen Hemmung nach kortikalen Verletzungen spielt. So könnte ein TrkB-Rezeptor Agonist, wie das kürzlich entdeckte 7,8-DHF, über eine Modulation der BDNF-TrB Signalkaskade pharmakologisch die funktionelle Reorganisation des Kortex nach einer fokalen Gehirnverletzung fördern. rnrn