3 resultados para biodiversity gradients
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Species richness varies greatly across geographical regions. Eastern Arc Mountains (EAM) of Kenya and Tanzania is one of the global biodiversity hotspots. Despite this, high species diversity the explanatory factors have remained largely unexplored. Herein, this study first investigated amphibian species richness patterns in the EAM and particularly the reasons for the low richness in Taita Hills. It tested the hypothesis that the low richness is due to past forest loss or other factors. The results demonstrated that the regional species richness pattern was influenced largely by mean annual rainfall and not forest area. Secondly, using the 26 currently recorded amphibians in the Taita Hills, it investigated the relationship between amphibian species composition along anthropogenic habitat disturbance and elevation gradients. It tested the hypothesis that sites with similar environmental characteristics (temperature, rainfall and elevation), in close proximity and with similar disturbance levels (habitat types) harbour similar species composition. It was found that amphibian species composition differed in terms of elevation and was explained by both temperature and rainfall. Therefore sites with similar environmental characteristics, disturbance levels and in close proximity geographically have similar amphibian composition. Thirdly, diagnostic characters, distribution, basic life history characteristics and conservation status of all currently known amphibians in the Taita Hills were provided. Finally, first long term life history and ecological characteristics of a brevicipitid frog (Callulina sp) was provided. The results showed that this frog abundance and distribution is influenced mainly by mean monthly temperature, breeds during the long dry season and exhibit parental care. Results of this study strongly recommend increasing indigenous forest cover in order to enhance the conservation of the endemic indigenous forest associated amphibians such as Callulina sp, Boulengerula taitana and Boulengerula niedeni.
Resumo:
Nitrogen is an essential nutrient. It is for human, animal and plants a constituent element of proteins and nucleic acids. Although the majority of the Earth’s atmosphere consists of elemental nitrogen (N2, 78 %) only a few microorganisms can use it directly. To be useful for higher plants and animals elemental nitrogen must be converted to a reactive oxidized form. This conversion happens within the nitrogen cycle by free-living microorganisms, symbiotic living Rhizobium bacteria or by lightning. Humans are able to synthesize reactive nitrogen through the Haber-Bosch process since the beginning of the 20th century. As a result food security of the world population could be improved noticeably. On the other side the increased nitrogen input results in acidification and eutrophication of ecosystems and in loss of biodiversity. Negative health effects arose for humans such as fine particulate matter and summer smog. Furthermore, reactive nitrogen plays a decisive role at atmospheric chemistry and global cycles of pollutants and nutritive substances.rnNitrogen monoxide (NO) and nitrogen dioxide (NO2) belong to the reactive trace gases and are grouped under the generic term NOx. They are important components of atmospheric oxidative processes and influence the lifetime of various less reactive greenhouse gases. NO and NO2 are generated amongst others at combustion process by oxidation of atmospheric nitrogen as well as by biological processes within soil. In atmosphere NO is converted very quickly into NO2. NO2 is than oxidized to nitrate (NO3-) and to nitric acid (HNO3), which bounds to aerosol particles. The bounded nitrate is finally washed out from atmosphere by dry and wet deposition. Catalytic reactions of NOx are an important part of atmospheric chemistry forming or decomposing tropospheric ozone (O3). In atmosphere NO, NO2 and O3 are in photosta¬tionary equilibrium, therefore it is referred as NO-NO2-O3 triad. At regions with elevated NO concentrations reactions with air pollutions can form NO2, altering equilibrium of ozone formation.rnThe essential nutrient nitrogen is taken up by plants mainly by dissolved NO3- entering the roots. Atmospheric nitrogen is oxidized to NO3- within soil via bacteria by nitrogen fixation or ammonium formation and nitrification. Additionally atmospheric NO2 uptake occurs directly by stomata. Inside the apoplast NO2 is disproportionated to nitrate and nitrite (NO2-), which can enter the plant metabolic processes. The enzymes nitrate and nitrite reductase convert nitrate and nitrite to ammonium (NH4+). NO2 gas exchange is controlled by pressure gradients inside the leaves, the stomatal aperture and leaf resistances. Plant stomatal regulation is affected by climate factors like light intensity, temperature and water vapor pressure deficit. rnThis thesis wants to contribute to the comprehension of the effects of vegetation in the atmospheric NO2 cycle and to discuss the NO2 compensation point concentration (mcomp,NO2). Therefore, NO2 exchange between the atmosphere and spruce (Picea abies) on leaf level was detected by a dynamic plant chamber system under labo¬ratory and field conditions. Measurements took place during the EGER project (June-July 2008). Additionally NO2 data collected during the ECHO project (July 2003) on oak (Quercus robur) were analyzed. The used measuring system allowed simultaneously determina¬tion of NO, NO2, O3, CO2 and H2O exchange rates. Calculations of NO, NO2 and O3 fluxes based on generally small differences (∆mi) measured between inlet and outlet of the chamber. Consequently a high accuracy and specificity of the analyzer is necessary. To achieve these requirements a highly specific NO/NO2 analyzer was used and the whole measurement system was optimized to an enduring measurement precision.rnData analysis resulted in a significant mcomp,NO2 only if statistical significance of ∆mi was detected. Consequently, significance of ∆mi was used as a data quality criterion. Photo-chemical reactions of the NO-NO2-O3 triad in the dynamic plant chamber’s volume must be considered for the determination of NO, NO2, O3 exchange rates, other¬wise deposition velocity (vdep,NO2) and mcomp,NO2 will be overestimated. No significant mcomp,NO2 for spruce could be determined under laboratory conditions, but under field conditions mcomp,NO2 could be identified between 0.17 and 0.65 ppb and vdep,NO2 between 0.07 and 0.42 mm s-1. Analyzing field data of oak, no NO2 compensation point concentration could be determined, vdep,NO2 ranged between 0.6 and 2.71 mm s-1. There is increasing indication that forests are mainly a sink for NO2 and potential NO2 emissions are low. Only when assuming high NO soil emissions, more NO2 can be formed by reaction with O3 than plants are able to take up. Under these circumstance forests can be a source for NO2.
Resumo:
Tree-ring chronologies are a powerful natural archive to reconstruct summer temperature variations of the late Holocene with an annual resolution. To develop these long-term proxy records tree-ring series are commonly extended back in time by combining samples from living trees with relict dead material preserved onshore or in lakes. Former studies showed that low frequency variations in such reconstructions can be biased if the relict and recent material is from different origins. A detailed analysis of the influence of various ecological (micro-) habitats representing the recent part is required to estimate potential errors in temperature estimates. The application of collective detrending methods, that comprise absolute growth rates, can produce errors in climate reconstructions and results in an underestimation of past temperatures. The appearance of these kind of micro-site effects is a wide-spread phenomenon that takes place all over Fennoscandia. Future research in this key region for dendroclimatology should take this issue into account. Especially the higher climate response at the lakeshore site is interesting to achieve smaller uncertainties when a tree-ring series is transformed to temperature anomalies. For new composite chronologies the main aim should be to minimize potential biases and this includes also micro-site effects.