4 resultados para big-box retailing
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
The last decade has witnessed an exponential growth of activities in the field of nanoscience and nanotechnology worldwide, driven both by the excitement of understanding new science and by the potential hope for applications and economic impacts. The largest activity in this field up to date has been in the synthesis and characterization of new materials consisting of particles with dimensions in the order of a few nanometers, so-called nanocrystalline materials. [1-8] Semiconductor nanomaterials such as III/V or II/VI compound semiconductors exhibit strong quantum confinement behavior in the size range from 1 to 10 nm. Therefore, preparation of high quality semiconductor nanocrystals has been a challenge for synthetic chemists, leading to the recent rapid progress in delivering a wide variety of semiconducting nanomaterials. Semiconductor nanocrystals, also called quantum dots, possess physical properties distinctly different from those of the bulk material. Typically, in the size range from 1 to 10 nm, when the particle size is changed, the band gap between the valence and the conduction band will change, too. In a simple approximation a particle in a box model has been used to describe the phenomenon[9]: at nanoscale dimensions the degenerate energy states of a semiconductor separate into discrete states and the system behaves like one big molecule. The size-dependent transformation of the energy levels of the particles is called “quantum size-effect”. Quantum confinement of both the electron and hole in all three dimensions leads to an increase in the effective bandgap of the material with decreasing crystallite size. Consequently, both the optical absorption and emission of semiconductor nanaocrystals shift to the blue (higher energies) as the size of the particles gets smaller. This color tuning is well documented for CdSe nanocrystals whose absorption and emission covers almost the whole visible spectral range. As particle sizes become smaller the ratio of surface atoms to those in the interior increases, which has a strong impact on particle properties, too. Prominent examples are the low melting point [8] and size/shape dependent pressure resistance [10] of semiconductor nanocrystals. Given the size dependence of particle properties, chemists and material scientists now have the unique opportunity to change the electronic and chemical properties of a material by simply controlling the particle size. In particular, CdSe nanocrystals have been widely investigated. Mainly due to their size-dependent optoelectronic properties [11, 12] and flexible chemical processibility [13], they have played a distinguished role for a number of seminal studies [11, 12, 14, 15]. Potential technical applications have been discussed, too. [8, 16-27] Improvement of the optoelectronic properties of semiconductor nanocrystals is still a prominent research topic. One of the most important approaches is fabricating composite type-I core-shell structures which exhibit improved properties, making them attractive from both a fundamental and a practical point of view. Overcoating of nanocrystallites with higher band gap inorganic materials has been shown to increase the photoluminescence quantum yields by eliminating surface nonradiative recombination sites. [28] Particles passivated with inorganic shells are more robust than nanocrystals covered by organic ligands only and have greater tolerance to processing conditions necessary for incorporation into solid state structures or for other applications. Some examples of core-shell nanocrystals reported earlier include CdS on CdSe [29], CdSe on CdS, [30], ZnS on CdS, [31] ZnS on CdSe[28, 32], ZnSe on CdSe [33] and CdS/HgS/CdS [34]. The characterization and preparation of a new core-shell structure, CdSe nanocrystals overcoated by different shells (CdS, ZnS), is presented in chapter 4. Type-I core-shell structures as mentioned above greatly improve the photoluminescence quantum yield and chemical and photochemical stability of nanocrystals. The emission wavelengths of type-I core/shell nanocrystals typically only shows a small red-shift when compared to the plain core nanocrystals. [30, 31, 35] In contrast to type-I core-shell nanocrystals, only few studies have been conducted on colloidal type-II core/shell structures [36-38] which are characterized by a staggered alignment of conduction and valence bands giving rise to a broad tunability of absorption and emission wavelengths, as was shown for CdTe/CdSe core-shell nanocrystals. [36] The emission of type-II core/shell nanocrystals mainly originates from the radiative recombination of electron-hole pairs across the core-shell interface leading to a long photoluminescence lifetime. Type-II core/shell nanocrystals are promising with respect to photoconduction or photovoltaic applications as has been discussed in the literature.[39] Novel type-II core-shell structures with ZnTe cores are reported in chapter 5. The recent progress in the shape control of semiconductor nanocrystals opens new fields of applications. For instance, rod shaped CdSe nanocrystals can enhance the photo-electro conversion efficiency of photovoltaic cells, [40, 41] and also allow for polarized emission in light emitting diodes. [42, 43] Shape control of anisotropic nanocrystals can be achieved by the use of surfactants, [44, 45] regular or inverse micelles as regulating agents, [46, 47] electrochemical processes, [48] template-assisted [49, 50] and solution-liquid-solution (SLS) growth mechnism. [51-53] Recently, formation of various CdSe nanocrystal shapes has been reported by the groups of Alivisatos [54] and Peng, [55] respectively. Furthermore, it has been reported by the group of Prasad [56] that noble metal nanoparticles can induce anisotropic growth of CdSe nanocrystals at lower temperatures than typically used in other methods for preparing anisotropic CdSe structures. Although several approaches for anisotropic crystal growth have been reported by now, developing new synthetic methods for the shape control of colloidal semiconductor nanocrystals remains an important goal. Accordingly, we have attempted to utilize a crystal phase control approach for the controllable synthesis of colloidal ZnE/CdSe (E = S, Se, Te) heterostructures in a variety of morphologies. The complex heterostructures obtained are presented in chapter 6. The unique optical properties of nanocrystals make them appealing as in vivo and in vitro fluorophores in a variety of biological and chemical investigations, in which traditional fluorescence labels based on organic molecules fall short of providing long-term stability and simultaneous detection of multiple emission colours [References]. The ability to prepare water soluble nanocrystals with high stability and quantum yield has led to promising applications in cellular labeling, [57, 58] deep-tissue imaging, [59, 60] and assay labeling [61, 62]. Furthermore, appropriately solubilized nanocrystals have been used as donors in fluorescence resonance energy transfer (FRET) couples. [63-65] Despite recent progress, much work still needs to be done to achieve reproducible and robust surface functionalization and develop flexible (bio-) conjugation techniques. Based on multi-shell CdSe nanocrystals, several new solubilization and ligand exchange protocols have been developed which are presented in chapter 7. The organization of this thesis is as follows: A short overview describing synthesis and properties of CdSe nanocrystals is given in chapter 2. Chapter 3 is the experimental part providing some background information about the optical and analytical methods used in this thesis. The following chapters report the results of this work: synthesis and characterization of type-I multi-shell and type-II core/shell nanocrystals are described in chapter 4 and chapter 5, respectively. In chapter 6, a high–yield synthesis of various CdSe architectures by crystal phase control is reported. Experiments about surface modification of nanocrystals are described in chapter 7. At last, a short summary of the results is given in chapter 8.
Resumo:
Die räumliche und zeitliche Organisation von Genexpression ist für die Entwicklung und das Funktionieren eines jeden Lebewesens von immenser Bedeutung. Dazu laufen eine Vielzahl von Regulationsprozessen auf unterschiedlichen Ebenen ab. In dieser Arbeit wurden im ersten Teil Untersuchungen zur Genregulation des Drosophila optomotor-blind Genes und zur Funktion des Omb Proteins durchgeführt. Eine Mutante, der ein großer Teil der upstream regulatory region (URR) fehlt wurde erzeugt, aus einer Vielzahl von Linien isoliert und molekular charakterisiert. Die biologischen Auswirkungen dieser Deletion werden in Shen et al. (2008) beschrieben. Plasmide zur Erzeugung transgener Fliegen, mit deren Hilfe eine bereits von Sivasankaran et al. (2000) durchgeführte Enhancer-reporter-Analyse vervollständigt werden sollte, wurden hergestellt. Die bereits bekannte Inversion In(1)ombH31 wurde molekular kartiert. Eine Reihe von Konstrukten mit Punktmutationen in der Omb T-Domäne wurden generiert, die unter anderem über deren Funktion hinsichtlich DNA-Protein Interaktion und einer potentiellen Metallionenbindefähigkeit (ATCUN) hin Aufschluss geben sollen. Des Weiteren wurde eine Reihe von P-Element-Deletionslinien auf den Verlust eines alternativen omb Transkriptionsstartpunktes hin untersucht, mit dem Ziel eine vollständige Protein-Nullmutante zur Verfügung zu haben. Der zweite Abschnitt dieser Arbeit befasste sich mit der Erzeugung von Dpp-GFP-Fusionskonstrukten, mit deren Hilfe weitere Erkenntnisse über den Dpp-Langstreckentransport erhofft werden. Es wurde außerdem damit begonnen bei einem weitern Drosophila T-Box Transkriptionsfaktor, Optomotor-blind related gene-1 (Org-1), eine Reihe von Varianten mit homopolymeren polyAlanin und polyGlutamin Expansionen unterschiedlicher Länge herzustellen. Durch Experimente mit diesen Konstrukten soll Aufschluss darüber gewonnen werden, ob Glutamin-Expansionen, wie in der Literatur vorgeschlagen, aktivierend und Alanin-Expansionen in Transkriptionsfaktoren vielleicht reprimierend auf Genaktivität wirken. Letztlich wurden in dieser Arbeit im Rahmen des DROSDEL Projektes (Ryder et al., 2004, 2007) Deletionen in der distalen Hälfte des Chromosomenarms 3R hergestellt. Der DROSDEL Deletionskit, der durch eine Kooperation europäischer Labore entstand stellt der Drosophila Forschung einen umfassenden Satz molekular basengenau definierter Defizienzen zur Verfügung.
Resumo:
Zusammenfassung:rnrnDas Ziel der Arbeit bestand darin mehr über die Funktion des T-Box Transkriptionsfaktors Omb zu erfahren. Dm omb ist der nächste Verwandte zu Hs Tbx2/3, die wegen ihrer Rolle bei verschiedenen Krebsarten für die Entwicklung neuer Therapien bedeutsam sind. rnIn drei, von Herrn Pflugfelder hergestellten, omb Allelen l(1)omb282, l(1)omb12, l(1)omb15 wurden neue Mutationen kartiert. Dabei handelt es sich um zwei missense-Mutationen und eine Stopmutation. Sie betreffen Aminosäurereste, die in allen T-Box Proteinen konserviert sind und daher vermutlich lebenswichtige Proteinabschnitte betreffen. In EMSA Versuchen konnte gezeigt werden, dass die missense-Mutationen die DNA-Bindung des Omb-T Proteins verhindern.rnFür die Suche nach Omb Zielgenen wurden Gene und phylogenetisch konservierte TBE-Genabschnitte auf ihre Regulation durch Omb getestet. Dabei wurde das Expressionsmuster von Genen mitels in situ und das Muster von enhancer getriebener β-Gal Expression histochemisch oder durch Immunfärbung von wildtypischen und l(1)omb15 Larven des dritten Stadiums verglichen. rnUpstream der mirr Transkriptionseinheit wurde ein cis-regulatorisches TBE-Fragment identifiziert, das ein Aktivitätsmuster in Flügelimaginalscheiben zeigte, welches dem von Mirr nahe kommt. Sowohl ein Omb Verlust als auch die Mutation der TBE Sequenz führten zu einer ähnlichen ektopischen Aktivierung des Fragments, was auf eine Abhängigkeit von Omb hinweist. rnIn der intronischen Sequenz von inv wurde ebenfalls ein TBE-Fragment entdeckt, das eine β-Gal-Aktivität in Flügelscheiben des späten L3 Stadiums anterior der A/P Grenze zeigte. Diese Expression könnte sich mit der späten für en/inv beschriebenen Expression (Blair, 1992) decken. Immunfärbungen bestätigten, dass der Verlust dieser Aktivität in omb0 tatsächlich durch den Verlust von Omb hervorgerufen wird und nicht durch eine Entwicklungsverzögerung der Larven verursacht wird.rnSchließlich wurde durch die Reparatur von TBX Expressionsvektoren eine Konstruktreihe (Legler, 2010) fertiggestellt, mit deren Hilfe die Auswirkungen einer Überexpression auf die Zellmotilität in Drosophila untersucht werden kann. Das soll helfen den Einfluss von TBX Proteinen auf die Invasivität von Krebszellen zu verstehen.rn
Resumo:
In a prior bioinformatic analysis by Hüyseyin Binbas, potential Tbx targets sequences in wing-related genes have been identified. Guided by this information, enhancer trap/reporter lacZ insertions were characterized by X-gal staining first in wildtype and then in l(1)omb imaginal discs.rnIn several lines I observed an increase in reporter expression in a l(1)omb mutant background. Since Omb is assumed to function predominantly as a transcriptional repressor, this may indicate direct regulation. Repression by Omb was observed e.g. for brk and tkv. These genes are negatively regulated by Dpp, while omb is induced by Dpp. Omb which mediates the effects of Dpp on proliferation could, thus, also mediate the Dpp effect on patterning of the wing disc. However, brk and tkv were not completely derepressed in l(1)omb indicating that Dpp represses these genes also by an Omb-independent mechanism.rnMore frequently I observed loss of reporter expression in an l(1)omb mutant background. In these cases, regulation by Omb presumably is indirect. For example, STAT92E-lacZ expression in the wildtype eye was symmetrically expressed at the dorsal and ventral margins. In l(1)omb, ventral expression was selectively lost. Loss of omb is known to cause ventral overproliferation of the eye by activation of the Jak/STAT pathway. STAT92E expression is negatively regulated by Jak/STAT signaling suggesting that loss of omb activates Jak/STAT further upstream in the pathway.rnRegional overproliferation of eye and wing in the l(1)omb mutant background proved a complicating issue in the search for Omb targets. This effect made it difficult to decide whether an expanded reporter expression pattern was due to tissue expansion or reporter gene derepression. For instance hth-lacZ appeared to expand along the ventral eye disc margin in l(1)omb. Without addtional experiments it cannot be concluded whether this is due to de-repression or to activation in association with the proliferative state. Parallel to my experiments, evidence accumulated in our laboratory that loss of omb may attenuate Wg and Hegehog signaling. Since these diffusible proteins are the main patterning molecules in the wing imaginal disc, with dpp being downstream of Hh, many of the observed effects could be secondary to reduced Wg and Hh activity. Examples are ab-lacZ, Dll-lacZ and vgBE-lacZ (reduced expression on the dorso-ventral boundary) and inv-lacZ (late larval expression in the anterior wing disc compartment is lost) or sal-lacZ. Epistasis experiment will be required to clarifiy these issues.rnFurthermore, loss of omb appeared to induce cell fate changes. It was reported previously that in an omb null mutant, the dorsal determinant apterous (ap) is ectopically expressed in the ventral compartment (an effect I did not observe with the strongly hypomorphic l(1)omb15, indicating strong dose dependence). Ventral repression of ap is maintained by epigenetic mechanisms. The patchy and variable nature of ectopic expression of ap or grn-1.1-lacZ points to an effect of omb on epigenetic stability.rnIn the second part of my thesis, an analysis of Omb expression in the Drosophila embryonic ventral nervous system was performed. Omb was found co-expressed with Eve in the medial aCC and RP2 motorneurons as well as the fpCC interneuron and the mediolateral CQ neurons. Additionally, Omb was detected in the Eg positive NB7-3 GW serotonergic motoneuron and the N2-4 neurons. Omb was not found in Repo positive glial cells. During embryonic stage 14, Omb showed some coepression with Dpn or Pros. At the embryonic stage 16, Omb was expressed in minor subset of Mid and Wg positive cells.