4 resultados para attachment style

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In der vorliegenden Arbeit wird zum einen ein Instrument zur Erfassung der Patient-Therapeut-Bindung validiert (Client Attachment to Therapist Scale, CATS; Mallinckrodt, Coble & Gantt, 1995), zum anderen werden Hypothesen zu den Zusammenhängen zwischen Selbstwirksamkeitserwartung, allgemeinem Bindungsstil, therapeutischer Beziehung (bzw. Therapiezufriedenheit), Patient-Therapeut-Bindung und Therapieerfolg bei Drogen-abhängigen in stationärer Postakutbehandlung überprüft. In die Instrumentenvalidierung (einwöchiger Retest) wurden 119 Patienten aus 2 Kliniken und 13 Experten einbezogen. Die Gütekriterien des Instrumentes fallen sehr zufriedenstellend aus. An der naturalistischen Therapieevaluationsstudie (Prä-, Prozess-, Post-Messung: T0, T1, T2) nahmen 365 Patienten und 27 Therapeuten aus 4 Kliniken teil. Insgesamt beendeten 44,1% der Patienten ihren stationären Aufenthalt planmäßig. Auf Patientenseite erweisen sich Alter und Hauptdiagnose, auf Therapeutenseite die praktizierte Therapierichtung als Therapieerfolgsprädiktoren. Selbstwirksamkeitserwartung, allgemeiner Bindungsstil, Patient-Therapeut-Bindung und Therapiezufriedenheit eignen sich nicht zur Prognose des Therapieerfolgs. Die zu T0 stark unterdurchschnittlich ausgeprägte Selbstwirksamkeits-erwartung steigert sich über den Interventionszeitraum, wobei sich ein Moderatoreffekt der Patient-Therapeut-Bindung beobachten lässt. Es liegt eine hohe Prävalenz unsicherer allgemeiner Bindungsstile vor, welche sich über den Therapiezeitraum nicht verändern. Die patientenseitige Zufriedenheit mit der Therapie steigt von T1 zu T2 an. Die Interrater-Konkordanz (Patient/Therapeut) zur Einschätzung der Patient-Therapeut-Bindung erhöht sich leicht von T1 zu T2. Im Gegensatz dazu wird die Therapiezufriedenheit von Patienten und Therapeuten zu beiden Messzeitpunkten sehr unterschiedlich beurteilt. Die guten Testgütekriterien der CATS sprechen für eine Überlegenheit dieses Instrumentes gegenüber der Skala zur Erfassung der Therapiezufriedenheit. Deshalb sollte die Patient-Therapeut-Bindung anhand dieses Instrumentes in weiteren Forschungsarbeiten an anderen Patientenkollektiven untersucht werden, um generalisierbare Aussagen zur Validität treffen zu können.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the quickest plant movements ever known is made by the ´explosive´ style in Marantaceae in the service of secondary pollen presentation – herewith showing a striking apomorphy to the sister Cannaceae that might be of high evolutionary consequence. Though known already since the beginning of the 19th century the underlying mechanism of the movement has hitherto not been clarified. The present study reports about the biomechanics of the style-staminode complex and the hydraulic principles of the movement. For the first time it is shown by experiment that in Maranta noctiflora through longitudinal growth of the maturing style in the ´straitjacket´ of the hooded staminode both the hold of the style prior to its release and its tensioning for the movement are brought about. The longer the style grows in relation to the enclosing hooded staminode the more does its capacity for curling up for pollen transfer increase. Hereby I distinguish between the ´basic tension´ that a growing style builds up anyway, even when the hooded staminode is removed beforehand, and the ´induced tension´ which comes about only under the pressure of a ´too short´ hooded staminode and which enables the movement. The results of these investigations are discussed in view of previous interpretations ranging from possible biomechanical to electrophysiological mechanisms. To understand furthermore by which means the style gives way to the strong bending movement without suffering outwardly visible damage I examined its anatomical structure in several genera for its mechanical and hydraulic properties and for the determination of the entire curvature after release. The actual bending part contains tubulate cells whose walls are extraordinarily porous and large longitudinal intercellular spaces. SEM indicates the starting points of cell-wall loosening in primary walls and lysis of middle lamellae - probably through an intense pectinase activity in the maturing style. Fluorescence pictures of macerated and living style-tissue confirm cell-wall perforations that do apparently connect neighbouring cells, which leads to an extremely permeable parenchyma. The ´water-body´ can be shifted from central to dorsal cell layers to support the bending. The geometrical form of the curvature is determined by the vascular bundles. I conclude that the style in Marantaceae contains no ´antagonistic´ motile tissues as in Mimosa or Dionaea. Instead, through self-maceration it develops to a ´hydraulic tissue´ which carries out an irreversible movement through a sudden reshaping. To ascertain the evolutionary consequence of this apomorphic pollination mechanism the diversity and systematic value of hooded staminodes are examined. For this hooded staminodes of 24 genera are sorted according to a minimalistic selection of shape characters and eight morphological types are abstracted from the resulting groups. These types are mapped onto an already available maximally parsimonious tree comprising five major clades. An amazing correspondence is found between the morphological types and the clades; several sister-relationships are confirmed and in cases of uncertain position possible evolutionary pathways, such as convergence, dispersal or re-migration, are discussed, as well as the great evolutionary tendencies for the entire family in which – at least as regards the shape of hooded staminodes – there is obviously a tendency from complicated to strongly simplified forms. It suggests itself that such simplifying derivations may very likely have taken place as adaptations to pollinating animals about which at present too little is known. The value of morphological characters in relation to modern phylogenetic analysis is discussed and conditions for the selection of morphological characters valuable for a systematic grouping are proposed. Altogether, in view of the evolutionary success of Marantaceae compared with Cannaceae the movement mechanism of the style-staminode complex can safely be considered a key innovation within the order Zingiberales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chapter 1 of this thesis comprises a review of polyether polyamines, i.e., combinations of polyether scaffolds with polymers bearing multiple amino moieties. Focus is laid on controlled or living polymerization methods. Furthermore, fields in which the combination of cationic, complexing, and pH-sensitive properties of the polyamines and biocompatibility and water-solubility of polyethers promise enormous potential are presented. Applications include stimuli-responsive polymers with a lower critical solution temperature (LCST) and/or the ability to gel, preparation of shell cross-linked (SCL) micelles, gene transfection, and surface functionalization.rnIn Chapter 2, multiaminofunctional polyethers relying on the class of glycidyl amine comonomers for anionic ring-opening polymerization (AROP) are presented. In Chapter 2.1, N,N-diethyl glycidyl amine (DEGA) is introduced for copolymerization with ethylene oxide (EO). Copolymer microstructure is assessed using online 1H NMR kinetics, 13C NMR triad sequence analysis, and differential scanning calorimetry (DSC). The concurrent copolymerization of EO and DEGA is found to result in macromolecules with a gradient structure. The LCSTs of the resulting copolymers can be tailored by adjusting DEGA fraction or pH value of the environment. Quaternization of the amino moieties by methylation results in polyelectrolytes. Block copolymers are used for PEGylated gold nanoparticle formation. Chapter 2.2 deals with a glycidyl amine monomer with a removable protecting group at the amino moiety, for liberation of primary amines at the polyether backbone, which is N,N-diallyl glycidyl amine (DAGA). Its allyl groups are able to withstand the harsh basic conditions of AROP, but can be cleaved homogeneously after polymerization. Gradient as well as block copolymers poly(ethylene glycol)-PDAGA (PEG-PDAGA) are obtained. They are analyzed regarding their microstructure, LCST behavior, and cleavage of the protecting groups. rnChapter 3 describes applications of multi(amino)functional polyethers for functionalization of inorganic surfaces. In Chapter 3.1, they are combined with an acetal-protected catechol initiator, leading to well-defined PEG and heteromultifunctional PEG analogues. After deprotection, multifunctional PEG ligands capable of attaching to a variety of metal oxide surfaces are obtained. In a cooperative project with the Department of Inorganic and Analytical Chemistry, JGU Mainz, their potential is demonstrated on MnO nanoparticles, which are promising candidates as T1 contrast agents in magnetic resonance imaging. The MnO nanoparticles are solubilized in aqueous solution upon ligand exchange. In Chapter 3.2, a concept for passivation and functionalization of glass surfaces towards gold nanorods is developed. Quaternized mPEG-b-PqDEGA diblock copolymers are attached to negatively charged glass surfaces via the cationic PqDEGA blocks. The PEG blocks are able to suppress gold nanorod adsorption on the glass in the flow cell, analyzed by dark field microscopy.rnChapter 4 highlights a straightforward approach to poly(ethylene glycol) macrocycles. Starting from commercially available bishydroxy-PEG, cyclic polymers are available by perallylation and ring-closing metathesis in presence of Grubbs’ catalyst. Purification of cyclic PEG is carried out using α-cyclodextrin. This cyclic sugar derivative forms inclusion complexes with remaining unreacted linear PEG in aqueous solution. Simple filtration leads to pure macrocycles, as evidenced by SEC and MALDI-ToF mass spectrometry. Cyclic polymers from biocompatible precursors are interesting materials regarding their increased blood circulation time compared to their linear counterparts.rnIn the Appendix, A.1, a study of the temperature-dependent water-solubility of polyether copolymers is presented. Macroscopic cloud points, determined by turbidimetry, are compared with microscopic aggregation phenomena, monitored by continuous wave electron paramagnetic resonance (CW EPR) spectroscopy in presence of the amphiphilic spin probe and model drug (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO). These thermoresponsive polymers are promising candidates for molecular transport applications. The same techniques are applied in Chapter A.2 to explore the pH-dependence of the cloud points of PEG-PDEGA copolymers in further detail. It is shown that the introduction of amino moieties at the PEG backbone allows for precise manipulation of complex phase transition modes. In Chapter A.3, multi-hydroxyfunctional polysilanes are presented. They are obtained via copolymerization of the acetal-protected dichloro(isopropylidene glyceryl propyl ether)methylsilane monomer. The hydroxyl groups are liberated through acidic work-up, yielding versatile access to new multifunctional polysilanes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Different concepts for the synthesis of sulfur-containing polymers as well as their adsorption onto gold surfaces were studied. The present work is divided into three parts. The main part focuses on the synthesis of poly(1,2-alkylene sulfides) (“polysulfides”) with complex architectures on the basis of polyether-based macroinitiators by the anionic ring-opening polymerization of ethylene sulfide and propylene sulfide. This synthetic tool kit allowed the synthesis of star-shaped, brush-like, comb-like and pom-pom-like polysulfides, the latter two with an additional poly(ethylene glycol) chain. Additionally, the number of polysulfide arms as well as the monomer composition could be varied over a wide range to obtain copolymers with multiple thioether functionalities.rnThe second section deals with the synthesis of a novel lipoic acid-based initiator for ring-opening polymerizations for lactones and epoxides. A straightforward approach was selected to accomplish the ability to obtain tailored polymers with a common used disulfide-anchoring group, without the drawbacks of post-polymerization functionalization. rnIn the third part, a new class of block-copolymers consisting of polysulfides and polyesters were investigated. For the first time this approach enabled the use of hydroxyl-terminated poly(propylene sulfide) as macroinitiator for the synthesis of a second block.rnThe adsorption efficiency of those different polymer classes onto gold nanoparticles as well as gold rnsupports was studied via different methods.rn