3 resultados para ascent
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Die Ränder des Labrador Meeres wurden während des späten Neoproterozoikums intensiv von karbonatreichen silikatischen Schmelzen durchsetzt. Diese Schmelzen bildeted sich bei Drucken zwischen ca. 4-6 GPa (ca. 120-180 km Tiefe) an der Basis der kontinentalen Mantel-Lithosphäre. Diese Magmengenerierung steht in zeitlichem und räumlichem Zusammenhang mit kontinentalen Extensionsprozessen, welche zu beiden Seiten des sich öffnenden Iapetus-Ozeans auftraten.
Resumo:
Der Wintersturm Lothar zog am 26. Dezember 1999 über Europa und richtete in Frankreich, in Deutschland, in der Schweiz und in Österreich ungewöhnlich hohe Schäden an. Lothar entstand aus einer diabatischen Rossby Welle (DRW) und erreichte erst wenige Stunden vor dem europäischen Kontinent Orkanstärke. DRWs weisen ein interessantes atmosphärisches Strömungsmuster auf. Sie bestehen aus einer positiven PV-Anomalie in der unteren Troposphäre, die sich in einer Region mit starkem meridionalen Temperaturgradient befindet. Die positive PV-Anomalie löst eine zyklonale Strömung aus, dadurch wird östlich der PV-Anomalie warme Luft aus dem Süden herantransportiert. Während des Aufstieg der warmen Luft finden diabatische Prozesse statt, die zur Bildung einer neuen positiven PV-Anomalie in der unteren Troposphäre (PVA) führen. DRWs entstehen unabhängig von PV-Anomalien an der Tropopause. Falls sie jedoch mit ihnen in Wechselwirkung treten, kann - wie im Falle von Lothar - eine explosive Zyklogenese daraus resultieren. Im ersten Teil wird die Dynamik einer DRW am Beispiel des Wintersturms Lothar untersucht. Es wird insbesondere auf das Potential einer DRW zur explosiven Zyklogenese eingegangen. Im zweiten Teil wird das Aufretreten von DRWs in ECMWF-Vorhersagen untersucht. Es werden Unterschiede zwischen DRWs und anderen PV-Anomalien in der unteren Troposphäre hervorgehoben. Die Dynamik von DRWs wird mit Hilfe eines ECMWF-"Ensemble Prediction System" (EPS) des Wintersturms Lothar untersucht. Die 50 Modellläufe des EPS starten am 24. Dezember 1999 um 12 UTC und reichen bis zum 26. Dezember 1999 um 12 UTC. Nur 16 der 50 Modellläufe sagen einen ähnlich starken Sturm wie Lothar vorher. 10 Modellläufen sagen am 26. Dezember keine Zyklone mehr vorher. Die Ausprägung der baroklinen Zone, in der sich die DRW befindet, ist ausschlaggebend für die Intensität der DRW. Weitere wichtige Parameter sind der Feuchtegehalt der unteren Troposphäre und der latente Wärmefluss über dem Ozean. Diejenigen DRWs, die sich zu am 25. Dezember um 12 UTC näher als 400 km am Tropopausenjet befinden, entwickeln sich zu einer starken Zyklone. Alle anderen lösen sich auf oder bleiben schwache Zyklonen. Es ist schwierig, diabatische Prozesse in Wettervorhersagemodellen abzubilden, dementsprechend treten Schwierigkeiten bei der Vorhersage von PVAs auf. In den operationellen ECMWF-Vorhersagen von Juni 2004 bis Mai 2005 werden mit Hilfe eines Tracking- Algorithmus PVAs im Nordpazifik und Nordatlantik bestimmt und in fünf Kategorien eingeteilt. Die fünf Kategorien unterscheiden sich in ihrer Häufigkeit, ihrer Zugbahn und ihrer Gestalt. Im Nordpazifik entstehen doppelt so viele PVAs wie im Nordatlantik. Durchschnittlich werden im Winter weniger PVAs gefunden als im Sommer. Die Baroklinität und die Geschwindigkeit des Tropopausenjets ist in der Nähe von DRWs besonders hoch. Verglichen mit anderen PVAs weisen DRWs eine ähnliche Verteilung des reduzierten Bodendrucks auf. DRWs können in etwa gleich gut vorhergesagt werden wie andere PVAs.
Resumo:
The global mid-ocean ridge system creates oceanic crust and lithosphere that covers more than two-thirds of the Earth. Basalts are volumetrically the most important rock type sampled at mid-ocean ridges. For this reason, our present understanding of upper mantle dynamics and the chemical evolution of the earth is strongly influenced by the study of mid-ocean ridge basalts (MORB). However, MORB are aggregates of polybarically generated small melt increments that can undergo a variety of physical and chemical processes during their ascent and consequently affect their derivative geochemical composition. Therefore, MORB do not represent “direct” windows to the underlying upper mantle. Abyssal peridotites, upper mantle rocks recovered from the ocean floor, are the residual complement to MORB melting and provide essential information on melt extraction from the upper mantle. In this study, abyssal peridotites are examined to address these overarching questions posed by previous studies of MORB: How are basaltic melts formed in the mantle, how are they extracted from the mantle and what physical and chemical processes control mantle melting? The number of studies on abyssal peridotites is small compared to those on basalts, in part because seafloor exposures of abyssal peridotites are relatively rare. For this reason, abyssal peridotite characteristics need to be considered in the context of subaerially exposed peridotites associated with ophiolites, orogenic peridotite bodies and basalt-hosted xenoliths. However, orogenic peridotite bodies are mainly associated with passive continental margins, most ophiolites are formed in supra-subduction zone settings, and peridotite xenoliths are often contaminated by their host magma. Therefore, studies of abyssal peridotites are essential to understanding the primary characteristics of the oceanic upper mantle free from the influence of continental rifting, subduction and tectonic emplacement processes. Nevertheless, numerous processes such as melt stagnation and cooling-induced, inter-mineral exchange can affect residual abyssal peridotite compositions after the cessation of melting. The aim of this study is to address these post-melting modifications of abyssal peridotites from a petrological-geochemical perspective. The samples in this study were dredged along the axis of the ultraslow-spreading Gakkel Ridge in the Arctic Ocean within the “Sparsely Magmatic Zone”, a 100 km ridge section where only mantle rocks are exposed. During two expeditions (ARK XVII-2 in 2001 and ARK XX-2 in 2004), exceptionally fresh peridotites were recovered. The boulders and cobbles collected cover a range of mantle rock compositions, with most characterized as plagioclase-free spinel peridotites or plagioclase- spinel peridotites. This thesis investigates melt stagnation and cooling processes in the upper mantle and is divided into two parts. The first part focuses on processes in the stability field of spinel peridotites (>10 kb) such as melt refertilization and cooling related trace element exchange, while the second part investigates processes in the stability field of plagioclase peridotites (< 10 kb) such as reactive melt migration and melt stagnation. The dissertation chapters are organized to follow the theoretical ascent of a mantle parcel upwelling beneath the location where the samples were collected.