3 resultados para Zweikomponenten
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Das Elektronentransportsystem von E. coli enthält zwei verschiedene NADH-Dehydrogenasen. Die NADH-DehydrogenaseI (nuoA-N) koppelt im Gegensatz zur NADH-DehydrogenaseII die Oxidation von NADH an eine Protonentranslokation und trägt zur Energiekonservierung bei. Die NADH-DehydrogenaseI wird über die Promotoren P1 und P2 exprimiert und besitzt mehrere Bindestellen für verschiedene Regulatoren.Die separate Klonierung der Promotoren, lacZ-Fusionen, Inaktivierung von Transkriptionsfaktoren, sowie die Nutzung mutierter Regulatorbindestellen in vivo zeigen, dass P1 im wesentlichen die Expressionshöhe bestimmt und ist unter aeroben und anaeroben Bedingungen aktiv. P2 trägt in wesentlich geringerem Maße als P1 zur Expression des Enzyms bei. Er ist stark abhängig von ArcA und IHF. Beide Promotoren wirken nicht additiv.Unter anaeroben Bedingungen wird die Transkription von nuo durch das Zweikomponenten-System ArcB/A reprimiert. ArcA bindet unabhängig und mit unterschiedlicher Affinität an die beiden Bindestellen arc1 und arc2. Von den 8 ArcA-Konsensussequenzen führen nur Mutationen der Konsensussequenzen arc1ab in vitro zu verminderter Bindungsaffinität von ArcA an die Bindestelle arc1. Dieselben führen in vivo unter anaeroben Bedingungen zur Derepression des Promotors P1 bzw. P1+P2. Unter aeroben Bedingungen zeigen nur Mutationen in arc2 eine Derepression, die nicht durch ArcA vermittelt wird. Der veröffentliche ArcA-Konsensus scheint deshalb hier in dieser einfachen Form nicht gültig zu sein.
Resumo:
Bakterien besitzen membranintegrierte Sensoren für die Reaktion auf verändernde Umweltbedingungen.rnViele der Sensoren sind Zweikomponenten-Systeme bestehend aus einer Sensorhistidinkinase und einem Responseregulator der die zellulare Antwort auslöst. DcuS, der C4-Dicarboxylat-Sensor von DcuS ist eine membranintegrierte Histidin-Kinase. DcuS ist ein Multidomänen-Protein mit einer sensorischen periplasmatischen PASP (Per-Arnt-Sim) Domäne, zwei Transmembranhelices, eine cytoplasmatische PASC-Domäne und eine C-terminale Kinase-Domäne. PAS-Domänen sind ubiquitäre Signalmodule die in allen Reichen des Lebens zu finden sind. PAS-Domänen detektieren eine Vielfalt von Reizen wie Licht, Sauerstoff, Redoxpotential und verschiedene kleine Moleküle so wie die Modulation von Protein-Protein Interaktionen. PAS-Domänen sind strukturell homolog und besitzen eine charakteristische α/β-Faltung. Eine große Anzahl der sensorischen PAS-Domänen wurden identifiziert, aber viele der PAS-Domänen besitzen keinen apparenten Cofaktor und die Funktion ist unbekannt.rnEine Kombination aus gerichteter und ungerichteter Mutagenese, Protein-Protein-Interaktionsstudien und Festkörper-NMR (ssNMR) Experimente mit strukturellem Modelling wurde zur Untersuchung der Struktur und Funktion der cytoplasmatischen PAS-Domäne des membranintegrierten Sensors DcuS verwendet. Die Experimente zeigen, dass PASC eine wichtige Rolle in die Signaltransduktion von PASP zur C-terminalen Histidin-Kinase von DcuS spielt.rn
Resumo:
Staphylococcus carnosus is a facultative anaerobic bacterium which features the cytoplasmic NreABC system. It is necessary for regulation of nitrate respiration and the nitrate reductase gene narG in response to oxygen and nitrate availability. NreB is a sensor kinase of a two-component system and represents the oxygen sensor of the system. It binds an oxygen labile [4Fe-4S]2+ cluster under anaerobic conditions. NreB autophosphorylates and phosphoryl transfer activates the response regulator NreC which induces narG expression. The third component of the Nre system is the nitrate receptor NreA. In this study the role of the nitrate receptor protein NreA in nitrate regulation and its functional and physiological effect on oxygen regulation and interaction with the NreBC two-component system were detected. In vivo, a reporter gene assay for measuring expression of the NreABC regulated nitrate reductase gene narG was used for quantitative evaluation of NreA function. Maximal narG expression in wild type S. carnosus required anaerobic conditions and the presence of nitrate. Deletion of nreA allowed expression of narG under aerobic conditions, and under anaerobic conditions nitrate was no longer required for maximal induction. This indicates that NreA is a nitrate regulated inhibitor of narG expression. Purified NreA and variant NreA(Y95A) inhibited the autophosphorylation of anaerobic NreB in part and completely, respectively. Neither NreA nor NreA(Y95A) stimulated dephosphorylation of NreB-phosphate, however. Inhibition of phosphorylation was relieved completely when NreA with bound nitrate (NreA•[NO3-]) was used. The same effects of NreA were monitored with aerobically isolated Fe-S-less NreB, which indicates that NreA does not have an influence on the iron-sulfur cluster of NreB. In summary, the data of this study show that NreA interacts with the oxygen sensor NreB and controls its phosphorylation level in a nitrate dependent manner. This modulation of NreB-function by NreA and nitrate results in nitrate/oxygen co-sensing by an NreA/NreB sensory unit. It transmits the regulatory signal from oxygen and nitrate in a joint signal to target promoters. Therefore, nitrate and oxygen regulation of nitrate dissimilation follows a new mode of regulation not present in other facultative anaerobic bacteria.