4 resultados para Weak Compact Generating

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we are concerned with the analysis and numerical solution of Black-Scholes type equations arising in the modeling of incomplete financial markets and an inverse problem of determining the local volatility function in a generalized Black-Scholes model from observed option prices. In the first chapter a fully nonlinear Black-Scholes equation which models transaction costs arising in option pricing is discretized by a new high order compact scheme. The compact scheme is proved to be unconditionally stable and non-oscillatory and is very efficient compared to classical schemes. Moreover, it is shown that the finite difference solution converges locally uniformly to the unique viscosity solution of the continuous equation. In the next chapter we turn to the calibration problem of computing local volatility functions from market data in a generalized Black-Scholes setting. We follow an optimal control approach in a Lagrangian framework. We show the existence of a global solution and study first- and second-order optimality conditions. Furthermore, we propose an algorithm that is based on a globalized sequential quadratic programming method and a primal-dual active set strategy, and present numerical results. In the last chapter we consider a quasilinear parabolic equation with quadratic gradient terms, which arises in the modeling of an optimal portfolio in incomplete markets. The existence of weak solutions is shown by considering a sequence of approximate solutions. The main difficulty of the proof is to infer the strong convergence of the sequence. Furthermore, we prove the uniqueness of weak solutions under a smallness condition on the derivatives of the covariance matrices with respect to the solution, but without additional regularity assumptions on the solution. The results are illustrated by a numerical example.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present thesis is a contribution to the theory of algebras of pseudodifferential operators on singular settings. In particular, we focus on the $b$-calculus and the calculus on conformally compact spaces in the sense of Mazzeo and Melrose in connection with the notion of spectral invariant transmission operator algebras. We summarize results given by Gramsch et. al. on the construction of $Psi_0$-and $Psi*$-algebras and the corresponding scales of generalized Sobolev spaces using commutators of certain closed operators and derivations. In the case of a manifold with corners $Z$ we construct a $Psi*$-completion $A_b(Z,{}^bOmega^{1/2})$ of the algebra of zero order $b$-pseudodifferential operators $Psi_{b,cl}(Z, {}^bOmega^{1/2})$ in the corresponding $C*$-closure $B(Z,{}^bOmega^{12})hookrightarrow L(L^2(Z,{}^bOmega^{1/2}))$. The construction will also provide that localised to the (smooth) interior of Z the operators in the $A_b(Z, {}^bOmega^{1/2})$ can be represented as ordinary pseudodifferential operators. In connection with the notion of solvable $C*$-algebras - introduced by Dynin - we calculate the length of the $C*$-closure of $Psi_{b,cl}^0(F,{}^bOmega^{1/2},R^{E(F)})$ in $B(F,{}^bOmega^{1/2}),R^{E(F)})$ by localizing $B(Z, {}^bOmega^{1/2})$ along the boundary face $F$ using the (extended) indical familiy $I^B_{FZ}$. Moreover, we discuss how one can localise a certain solving ideal chain of $B(Z, {}^bOmega^{1/2})$ in neighbourhoods $U_p$ of arbitrary points $pin Z$. This localisation process will recover the singular structure of $U_p$; further, the induced length function $l_p$ is shown to be upper semi-continuous. We give construction methods for $Psi*$- and $C*$-algebras admitting only infinite long solving ideal chains. These algebras will first be realized as unconnected direct sums of (solvable) $C*$-algebras and then refined such that the resulting algebras have arcwise connected spaces of one dimensional representations. In addition, we recall the notion of transmission algebras on manifolds with corners $(Z_i)_{iin N}$ following an idea of Ali Mehmeti, Gramsch et. al. Thereby, we connect the underlying $C^infty$-function spaces using point evaluations in the smooth parts of the $Z_i$ and use generalized Laplacians to generate an appropriate scale of Sobolev spaces. Moreover, it is possible to associate generalized (solving) ideal chains to these algebras, such that to every $ninN$ there exists an ideal chain of length $n$ within the algebra. Finally, we discuss the $K$-theory for algebras of pseudodifferential operators on conformally compact manifolds $X$ and give an index theorem for these operators. In addition, we prove that the Dirac-operator associated to the metric of a conformally compact manifold $X$ is not a Fredholm operator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vegetation-cycles are of general interest for many applications. Be it for harvest-predictions, global monitoring of climate-change or as input to atmospheric models.rnrnCommon Vegetation Indices use the fact that for vegetation the difference between Red and Near Infrared reflection is higher than in any other material on Earth’s surface. This gives a very high degree of confidence for vegetation-detection.rnrnThe spectrally resolving data from the GOME and SCIAMACHY satellite-instrumentsrnprovide the chance to analyse finer spectral features throughout the Red and Near Infrared spectrum using Differential Optical Absorption Spectroscopy (DOAS). Although originally developed to retrieve information on atmospheric trace gases, we use it to gain information on vegetation. Another advantage is that this method automatically corrects for changes in the atmosphere. This renders the vegetation-information easily comparable over long time-spans.rnThe first results using previously available reference spectra were encouraging, but also indicated substantial limitations of the available reflectance spectra of vegetation. This was the motivation to create new and more suitable vegetation reference spectra within this thesis.rnThe set of reference spectra obtained is unique in its extent and also with respect to its spectral resolution and the quality of the spectral calibration. For the first time, this allowed a comprehensive investigation of the high-frequency spectral structures of vegetation reflectance and of their dependence on the viewing geometry.rnrnThe results indicate that high-frequency reflectance from vegetation is very complex and highly variable. While this is an interesting finding in itself, it also complicates the application of the obtained reference spectra to the spectral analysis of satellite observations.rnrnThe new set of vegetation reference spectra created in this thesis opens new perspectives for research. Besides refined satellite analyses, these spectra might also be used for applications on other platforms such as aircraft. First promising studies have been presented in this thesis, but the full potential for the remote sensing of vegetation from satellite (or aircraft) could bernfurther exploited in future studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Das Kolumnarwachstum beim Apfel (Malus x domestica) geht auf eine in den frühen 1960er Jahren entdeckte Zufallsmutation zurück. Die daraus resultierende Sprossmutante ist von großem wirtschaftlichem Interesse, da diese sehr kompakte Wuchsform unter anderem zu einer enormen Ertragssteigerung durch eine hohe Pflanzdichte der Bäume führt. Das Ziel der Arbeit ist die Entschlüsselung der molekularen Ursache dieser Mutation, die bisher weitgehend ungeklärt ist. Die Analyse wurde durch die Erstellung einer Referenzsequenz der Co-Zielregion einer kolumnaren Apfelsorte sowie durch die Konstruktion eng gekoppelter molekularer Marker realisiert. Durch die Konstruktion von genomischen Apfel-BAC-Bibliotheken mit mehrfacher Genomabdeckung und die Erstellung geeigneter Sonden wurde die Co-Region kloniert und deren Sequenz bestimmt. In Kombination zu dieser klassischen positionellen Klonierungsstrategie wurden genomische Illumina „mate pair“-Bibliotheken erstellt, sequenziert und bioinformatisch analysiert, um die genomische Region vollständig zu annotieren. Somit wurde eine vollständige genomische Referenz der Co-Region einer kolumnaren Apfelsorte erstellt, die die Grundlage für weitere Analysen bildet. Auf Basis dieser Referenz konnte die Co-Mutation in Form der Integration des LTR-Retrotransposons Gypsy-44 im kolumnaren Chromosom an Position 18,79 Mbp auf Chromosom 10 lokalisiert werden. Darüber hinaus konnten Transposon-basierende molekulare Marker erstellt werden, die eine verlässliche Genotypisierung von Apfelbäumen in Bezug auf das Kolumnarwachstum ermöglichen und dies unabhängig von der verwendeten Apfelsorte. Der genaue Wirkmechanismus von Gypsy-44, der zur Ausprägung dieses extremen Phänotyps führt, ist bislang unklar. Zusammenfassend lässt sich sagen, dass die molekulare Ursache für das kolumnare Wachstum aufgeklärt werden konnte und zudem die ersten molekularen Marker erstellt wurden, die eine sortenunabhängige Differenzierung zwischen kolumnaren und nicht kolumnaren Apfelbäumen ermöglichen.