2 resultados para Water absorption and secretion
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
In this thesis, interactions of folic acid with tea and tea components at the level of intestinal absorption have been investigated. Firstly, the interaction between folic acid and tea as well as tea catechins was studied in vitro, using Caco-2 cell monolayers and secondly, a clinical trial was designed and carried out. In addition, targeting of folic acid conjugated nanoparticles to FR expressing Caco-2 cells was studied in order to evaluate the principle of nutrient-receptor-coupled transport for drug targeting. In the first part of this work, it was shown that EGCG and ECG (gallated catechins) inhibit folic acid uptake (IC50 of 34.8 and 30.8 µmol/L) comparable to MTX (methotrexate) under these experimental conditions. Moreover, commercial green and black tea extracts inhibited folic acid uptake with IC50 values of approximately 7.5 and 3.6 mg/mL, respectively. These results clearly indicate an interaction between folic acid and green tea catechins at the level of intestinal uptake. The mechanism responsible for the inhibition process might be the inhibition of the influx transport routes for folates such as via RFC and/or PCFT. For understanding the in vivo relevance of this in vitro interaction, a phase one, open-labeled, randomized, cross-over clinical study in seven healthy volunteers was designed. For the 0.4 mg folic acid dose, the mean Cmax decreased by 39.2% and 38.6% and the mean AUC0 decreased by 26.6% and 17.9% by green tea and black tea, respectively. For the 5 mg folic acid dose, the mean Cmax decreased by 27.4% and mean AUC0 decreased by 39.9% when taken with green tea. The results of the clinical study confirm the interaction between tea and folic acid in vivo leading to lower bioavailabilities of folic acid. In the second part of the thesis, targeting studies using folic acid conjugated nanoparticles were conducted. Folic acid conjugated nanoparticles were shown to be internalized by the cell via FR (folate receptor) mediated endocytosis. DNA block copolymer micelles equipped with 2, 11 and 28 folic acid units respectively were applied on FR expressing Caco-2 cells. There was a direct proportion in the amount of internalized nanoparticle and the number of folic acid units on the periphery of the nanoparticle. To sum up, throughout this thesis, the importance of folic acid for nutrition and nutrient and drug related interactions of folic acid at intestinal level was shown. Furthermore, significance of FRs in targeting for cancer chemotherapy was demonstrated in in vitro cell culture experiments. Folic acid conjugated DNA block copolymer micelles were suggested as efficient nanoparticles for targeted drug delivery.
Resumo:
One of the basic concepts of molecular self-assembly is that the morphology of the aggregate is directly related to the structure and interaction of the aggregating molecules. This is not only true for the aggregation in bulk solution, but also for the formation of Langmuir films at the air/water interface. Thus, molecules at the interface do not necessarily form flat monomolecular films but can also aggregate into multilayers or surface micelles. In this context, various novel synthetic molecules were investigated in terms of their morphology at the air/water interface and in transferred films. rnFirst, the self-assembly of semifluorinated alkanes and their molecular orientation at the air/water interface and in transferred films was studied employing scanning force microscopy (SFM) and Kelvin potential force microscopy. Here it was found, that the investigated semifluorinated alkanes aggregate to form circular surface micelles with a diameter of 30 nm, which are constituted of smaller muffin-shaped subunits with a diameter of 10 nm. A further result is that the introduction of an aromatic core into the molecular structure leads to the formation of elongated surface micelles and thus implements a directionality to the self-assembly. rnSecond, the self-assembly of two different amphiphilic hybrid materials containing a short single stranded desoxyribonucleic acid (DNA) sequence was investigated at the air/water interface. The first molecule was a single stranded DNA (11mer) molecule with two hydrophobically modified 5-(dodec-1-ynyl)uracil nucleobases at the terminal 5'-end of the oligonucleotide sequence. Isotherm measurements revealed the formation of semi-stable films at the air/water interface. SFM imaging of films transferred via Langmuir-Blodgett technique supported this finding and indicated mono-, bi- and multilayer formation, according to the surface pressure applied upon transfer. Within these films, the hydrophilic DNA sequence was oriented towards air covering 95% of the substrate.rnSimilar results were obtained with a second type of amphiphile, a DNA block copolymer. Furthermore, the potential to perform molecular recognition experiments at the air/water interface with these DNA hybrid materials was evaluated.rnThird, polyglycerol ester molecules (PGE), which are known to form very stable foams, were studies. Aim was to elucidate the molecular structure of PGE molecules at the air/water interface in order to comprehend the foam stabilization mechanism. Several model systems mimicking the air/water interface of a PGE foam and methods for a noninvasive transfer were tested and characterized by SFM. It could be shown, that PGE stabilizes the air/water interface of a foam bubble by formation of multiple surfactant layers. Additionally, a new transfer technique, the bubble film transfer was established and characterized by high speed camera imaging.The results demonstrate the diversity of structures, which can be formed by amphiphilic molecules at the air/water interface and after film transfer, as well as the impact of the chemical structure on the aggregate morphology.