1 resultado para Wade, Butch
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Die Hypersilylgruppe (Me3Si)3Si stellt einen sehr sperrigen, Elektronen liefernden Substituenten dar und kann zur Stabilisierung niedriger Oxidationsstufen sowie ungewöhnlicher Strukturelemente dienen. Durch Reaktionen der base-freien Hypersilanide der Alkalimetalle sowie des Dihypersilylplumbandiyls mit unterschiedlichsten phosphorhaltigen Reagenzien konnten eine Reihe hypersilyl-stabilisierter Phosphor- und Bleicluster-Verbindungen erhalten werden. Kaliumhypersilanid reagiert in Toluol glatt mit weißem Phosphor bei Raumtemperatur in Toluol unter quantitativer Bildung von rotem Kalium-bis(hypersilyl)tetraphosphenid [(Me3Si)3Si]2P4K2 (1), einem Kaliumsalz des Tetraphosphens (Me3Si)3Si-PH-P=P-PH-Si(SiMe3)3. In Benzol oder Toluol steht 1 im Gleichgewicht mit dem dimeren Octaphosphanid [(Me3Si)3Si]4P8K4 (2). Bei längerem Stehen der toluolischen Lösungen zerfällt 1 langsam vermutlich in Folge einer Protolyse zum gelben Pentaphosphanid [(Me3Si)3Si]3P5K2 (4). Aus benzolischer Lösung konnte hingegen ein weiteres Oktaphosphanid, [(Me3Si)3Si]3P8K3 (5), isoliert werden. Führt man die Reaktion Kaliumhypersilanid mit P4 in stärker koordinierenden Lösungsmitteln wie Diethylether durch, so entstehen neben 1 größere Mengen des Triphosphenids [(Me3Si)3Si]2P3K (3); dieses enthält ein Triphosphaallyl-Anion mit partieller P-P-Doppelbindung. Setzt man Lithiumhypersilanid mit weißem Phosphor um, so beobachtet man eine vollständig andere Produktpallette. Als Hauptprodukte lassen Polyphosphane wie beispielsweise [(Me3Si)3Si]2P4 (6) nachweisen, das zu 1 analoge [(Me3Si)3Si]2P4Li2 (7) entsteht nur in vergleichsweise kleinen Mengen. In der Gegenwart von Hexahydro-1,3,5-trimethyl-S-triazin, entsteht aus Lithiumhypersilanid und P4 hingegen im wesentlichen [(Me3Si)3Si]2P3Li (8) neben beträchtlichen Mengen von (Me3Si)4Si. Dessen Bildung erfordert eine Si-Si-Bindungsspaltung im Verlauf der Reaktion. Die Reaktion von Natriumhypersilanid mit P4 verläuft sehr unübersichtlich, das Pentaphosphanid [(Me3Si)3Si]3P5Na2 (9) ist das einzige isolierbare Produkt. Setzt man 1 mit [(Me3Si)2Si]2Sn um, so bilden sich überraschenderweise, je nach verwendetem Solvens [(Me3Si)3Si]3P4SnK (10) oder [(Me3Si)3Si]2[(Me3Si)2N]P4SnK (11). Alle neuen Verbindungen wurden NMR-spektroskopisch charakterisiert, die Phosphenide 1, 7, 8 sowie die Phosphanide 2, 4, 5, 9, 10 darüber hinaus durch Kristallstrukturanalysen. Dihypersilylplumbandiyl und -stannandiyl reagieren bei tiefer Temperatur mit P4, MPH2 (M=Li, K), PMe3, and PH3 zu formalen Lewis-Säure-Base-Addukten. Die Addukte {[(Me3Si)3Si]2PbPH2}M [M = Li (15), K (18)], {{[(Me3Si)3Si]2Pb}2PH2}M [M = Li (19), K (20)], und [(Me3Si)3Si]2EPMe3 [E = Pb (21), Sn (22)] wurden als kristalline Feststoffe erhalten und konnten vollständig charakterisiert werden. Die metastabilen Addukte {[(Me3Si)3Si]2E}4P4 (E = Pb, Sn) und [(Me3Si)3Si]2PbPH3 konnten lediglich NMR-spektroskopisch nachgewiesen werden. Bei Raumtemperatur entstehen in Folge von Ligandenaustausch-Prozessen die kristallographisch charakterisierten Heterokubane [(Me3Si)3Si]4P4E4 [E = Pb (12), Sn (14)], das Diphosphen (Me3Si)3SiP=PSi(SiMe3)3 (13) sowie der Pb2P2-Heterocyclus [(Me3Si)3SiPbP(H)Si(SiMe3)3]2 (17). Bei tiefer Temperatur wird aus einer sehr langsamen Reaktion von Dihypersilylplumbandiyl und PH3 in sehr kleinen Ausbeuten ein weiteres, völlig unerwartetes Produkt gebildet: der Bleicluster [(Me3Si)3Si]6Pb12 (23). Er weist ein verzerrt ikosaedrisches, zentrosymmetrisches Pb12-Gerüst auf. Nach jetzigen Erkenntnissen läuft seine Bildung über das nicht fassbare Hydridoplumbandiyl HPbSi(SiMe3)3, das intermediär durch Substituentenaustausch zwischen Pb[Si(SiMe3)3]2 and PH3 entsteht. Der Ersatz des Phosphans durch andere Hydridquellen wie (Ph3PCuH)6, (iBu)2AlH, and Me3NAlH3 führt ebenfalls zur Bildung von Bleiclustern, allerdings ist jetzt der Cluster [(Me3Si)3Si]6Pb10 (24) das Hauptprodukt. Beide Cluster, 23 und 24, gehorchen den Wade-Regeln.