4 resultados para Viral genetics

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interleukin-6 (IL-6) aktiviert Zielzellen durch Bindung an den Interleukin-6-Rezeptor (IL-6R) und anschließende Homodimerisierung von gp130. IL-6 alleine kann nur Zellen aktivieren, die IL-6R exprimieren, der Komplex aus IL-6 und löslichem IL-6R (sIL-6R) kann gp130 auf Zellen aktivieren, die keinen IL-6R exprimieren. Von gp130 gibt es eine lösliche Form (sgp130), die in Komplexen mit sIL-6R und IL-6 vorliegen kann.Es wurden rekombinante Versionen von sgp130 konstruiert, exprimiert und aufgereinigt. Die sgp130 Proteine inhibieren die sIL-6R-abhängige Stimulation von Zellen, nicht jedoch über membrangebundenen IL-6R vermittelte IL-6-Aktivitäten. sgp130 inhibiert also selektiv sIL-6R-abhängige Antworten und hat keinen Einfluß auf IL-6-Antworten über membrangebundenen IL-6R.Das Genom von Humanem Herpesvirus-8 kodiert für ein virales IL-6 (vIL-6). Um zu klären, ob vIL-6 direkt an IL-6R oder gp130 bindet, wurden Immunpräzipitationen mit radioaktiv markiertem vIL-6 durchgeführt. Dabei zeigte vIL-6 eine direkte Interaktion mit gp130, nicht jedoch mit IL-6R.Die biologische Aktivität von vIL-6 ist IL-6R-unabhängig. Es gibt keinen Unterschied in der Effektivität von vIL-6 bei der Stimulation von Zellen die nur gp130 oder gp130 und IL-6R exprimieren. Die Ergebnisse demonstrieren, daß vIL-6 das erste bekannte Zytokin ist, welches direkt gp130 binden und aktivieren kann.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Expression of antibodies in plant against essential viral proteins could provide an alternative approach to engineered viral resistance. Engineered single chain Fv antibodies scFV are particularly suitable for expression in plant because of their small size and the lack of assembly requirements. RNA-dependent RNA polymerases (RdRps) function as the catalytic subunit of viral replicases required for the replication of all positive strand RNA viruses. By using Phage technology we selected scFvs from a phage library using purified E.coli expressed TBSV(Tomato bushy stunt virus) replicase as antigen. The scFvs mediated-inhibition of RdRp activity was studied in vitro and in planta. In vitro experiments showed the inhibition of CNV(Cucumber necrosis virus) and TCV(Turnip crinkle virus) RdRp. Transient in planta assays based on agroinfiltration and an infectious clone of TBSV demonstrated the inhibition of the replication of TBSV(Tomato bushy stunt virus). Epitope mapping showed that the selected scFvs target the motif E of RdRp which is involved in template binding.Moreover T1 plants of transgenic lines of N. benthamiana expressing different scFvs either in the cytoplasm or the ER (endoplasmic reticulum) showed a high level of resistance against infection with TBSV and RCNMV(Red clover necrotic mosaic virus) upon inoculation with virus particles. This is the first report that scFvs against a RdRp of a plant viruses can inhibit viral replication in vivo. The resistance is even efficient against viruses belonging to different virus families.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A viral vector system was developed based on a DI-RNA, a sub-viral particle derived from TBSV-BS3-statice. This newly designed vector system was tested for its applicability in protein expression and induction of gene silencing. Two strategies were pursued. The first strategy was replication of the DI-RNA by a transgenically expressed TBSV replicase and the second was the replication by a so called helper virus. It could be demonstrated by northern blot analysis that the replicase, expressed by the transgenic N. benthamiana plant line TR4 or supplied by the helper virus, is able to replicate DI-RNA introduced into the plant cells. Various genes were inserted into different DI constructs in order to study the vector system with regard to protein expression. However, independent of how the replicase was provided no detectable amounts of protein were produced in the plants. Possible reasons for this failure are identified: the lack of systemic movement of the DI-RNA in the transgenic TR4 plants and the occurrence of deletions in the inserted genes in both systems. As a consequence the two strategies were considered unsuitable for protein expression. The DI-RNA vector system was able to induce silencing of transgenes as well as endogenous genes. Several different p19 deficient helper virus constructs were made to evaluate their silencing efficiency in combination with our DI-RNA constructs. However, it was found that our vector system can not compete with other existing VIGS (virus induced gene silencing) systems in this field. Finally, the influence of DI sequences on mRNA stability on transient GUS expression experiments in GUS silenced plants was evaluated. The GUS reporter gene system was found to be unsuitable for distinguishing between expression levels of wild type plants and GUS silenced transgenic plants. The results indicate a positive effect of the DI sequences on the level of protein expression and therefore further research into this area is recommended.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Toxicant inputs from agriculture, industry and human settlements have been shown to severely affect freshwater ecosystems. Pollution can lead to changes in population genetic patterns through various genetic and stochastic processes. In my thesis, I investigated the impact of anthropogenic stressors on the population genetics of the zebra mussel Dreissena polymorpha. In order to analyze the genetics of zebra mussel populations, I isolated five new highly polymorphic microsatellite loci. Out of those and other already existing microsatellite markers for this species, I established a robust marker set of six microsatellite loci for D. polymorpha. rnMonitoring the biogeographical background is an important requirement when integrating population genetic measures into ecotoxicological studies. I analyzed the biogeographical background of eleven populations in a section of the River Danube (in Hungary and Croatia) and some of its tributaries, and another population in the River Rhine as genetic outgroup. Moreover, I measured abiotic water parameters at the sampling sites and analyzed if they were correlated with the genetic parameters of the populations. The genetic differentiation was basically consistent with the overall biogeographical history of the populations in the study region. However, the genetic diversity of the populations was not influenced by the geographical distance between the populations, but by the environmental factors oxygen and temperature and also by other unidentified factors. I found strong evidence that genetic adaptation of zebra mussel populations to local habitat conditions had influenced the genetic constitution of the populations. Moreover, by establishing the biogeographical baseline of molecular variance in the study area, I laid the foundation for interpreting population genetic results in ecotoxicological experiments in this region.rnIn a cooperation project with the Department of Zoology of the University of Zagreb, I elaborated an integrated approach in biomonitoring with D. polymorpha by combining the analysis techniques of microsatellite analysis, Comet assay and micronucleus test (MNT). This approach was applied in a case study on freshwater contamination by an effluent of a wastewater treatment plant (WWTP) in the River Drava (Croatia) and a complementary laboratory experiment. I assessed and compared the genetic status of two zebra mussel populations from a contaminated and a reference site. Microsatellite analysis suggested that the contaminated population had undergone a genetic bottleneck, caused by random genetic drift and selection, whereas a bottleneck was not detected in the reference population. The Comet assay did not indicate any difference in DNA damage between the two populations, but MNT revealed that the contaminated population had an increased percentage of micronuclei in hemocytes in comparison to the reference population. The laboratory experiment with mussels exposed to municipal wastewater revealed that mussels from the contaminated site had a lower percentage of tail DNA and a higher percentage of micronuclei than the reference population. These differences between populations were probably caused by an overall decreased fitness of mussels from the contaminated site due to genetic drift and by an enhanced DNA repair mechanism due to adaptation to pollution in the source habitat. Overall, the combination of the three biomarkers provided sufficient information on the impact of both treated and non-treated municipal wastewater on the genetics of zebra mussels at different levels of biological organization.rnIn my thesis, I could show that the newly established marker set of six microsatellite loci provided reliable and informative data for population genetic analyses of D. polymorpha. The adaptation of the analyzed zebra mussel populations to the local conditions of their habitat had a strong influence on their genetic constitution. We found evidence that the different genetic constitutions of two populations had influenced the outcome of our ecotoxicological experiment. Overall, the integrated approach in biomonitoring gave comprehensive information about the impact of both treated and non-treated municipal wastewater on the genetics of zebra mussels at different levels of biological organization and was well practicable in a first case study.