2 resultados para Vertex Coloring Problem,AMPL
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
The focus of this thesis is to contribute to the development of new, exact solution approaches to different combinatorial optimization problems. In particular, we derive dedicated algorithms for a special class of Traveling Tournament Problems (TTPs), the Dial-A-Ride Problem (DARP), and the Vehicle Routing Problem with Time Windows and Temporal Synchronized Pickup and Delivery (VRPTWTSPD). Furthermore, we extend the concept of using dual-optimal inequalities for stabilized Column Generation (CG) and detail its application to improved CG algorithms for the cutting stock problem, the bin packing problem, the vertex coloring problem, and the bin packing problem with conflicts. In all approaches, we make use of some knowledge about the structure of the problem at hand to individualize and enhance existing algorithms. Specifically, we utilize knowledge about the input data (TTP), problem-specific constraints (DARP and VRPTWTSPD), and the dual solution space (stabilized CG). Extensive computational results proving the usefulness of the proposed methods are reported.
Resumo:
rnThis thesis is on the flavor problem of Randall Sundrum modelsrnand their strongly coupled dual theories. These models are particularly wellrnmotivated extensions of the Standard Model, because they simultaneously address rntherngauge hierarchy problem and the hierarchies in the quarkrnmasses and mixings. In order to put this into context, special attention is given to concepts underlying therntheories which can explain the hierarchy problem and the flavor structure of the Standard Model (SM). ThernAdS/CFTrnduality is introduced and its implications for the Randall Sundrum model withrnfermions in the bulk andrngeneral bulk gauge groups is investigated. It will be shown that the differentrnterms in the general 5D propagator of a bulk gauge field can be related tornthe corresponding diagrams of the strongly coupled dual, which allows for arndeeperrnunderstanding of the origin of flavor changing neutral currents generated by thernexchange of the Kaluza Klein excitations of these bulk fields.rnIn the numerical analysis, different observables which are sensitive torncorrections from therntree-levelrnexchange of these resonances will be presented on the basis of updatedrnexperimental data from the Tevatron and LHC experiments. This includesrnelectroweak precision observables, namely corrections to the S and Trnparameters followed by corrections to the Zbb vertex, flavor changingrnobservables with flavor changes at one vertex, viz. BR (Bd -> mu+mu-) and BR (Bs -> mu+mu-), and two vertices,rn viz. S_psiphi and |eps_K|, as well as bounds from direct detectionrnexperiments. rnThe analysis will show that all of these bounds can be brought in agreement withrna new physics scale Lambda_NP in the TeV range, except for the CPrnviolating quantity |eps_K|, which requires Lambda_NP= Ord(10) TeVrnin the absencernof fine-tuning. The numerous modifications of the Randall Sundrum modelrnin the literature, which try to attenuate this bound are reviewed andrncategorized.rnrnSubsequently, a novel solution to this flavor problem, based on an extendedrncolor gauge group in the bulk and its thorough implementation inrnthe RS model, will be presented, as well as an analysis of the observablesrnmentioned above in the extended model. This solution is especially motivatedrnfromrnthe point of view of the strongly coupled dual theory and the implications forrnstrongly coupled models of new physics, which do not possess a holographic dual,rnare examined.rnFinally, the top quark plays a special role in models with a geometric explanation ofrnflavor hierarchies and the predictions in the Randall-Sundrum model with andrnwithout the proposed extension for the forward-backward asymmetryrnA_FB^trnin top pair production are computed.