4 resultados para Vehicule routing

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the first full-fledged branch-and-price (bap) algorithm for the capacitated arc-routing problem (CARP). Prior exact solution techniques either rely on cutting planes or the transformation of the CARP into a node-routing problem. The drawbacks are either models with inherent symmetry, dense underlying networks, or a formulation where edge flows in a potential solution do not allow the reconstruction of unique CARP tours. The proposed algorithm circumvents all these drawbacks by taking the beneficial ingredients from existing CARP methods and combining them in a new way. The first step is the solution of the one-index formulation of the CARP in order to produce strong cuts and an excellent lower bound. It is known that this bound is typically stronger than relaxations of a pure set-partitioning CARP model.rnSuch a set-partitioning master program results from a Dantzig-Wolfe decomposition. In the second phase, the master program is initialized with the strong cuts, CARP tours are iteratively generated by a pricing procedure, and branching is required to produce integer solutions. This is a cut-first bap-second algorithm and its main function is, in fact, the splitting of edge flows into unique CARP tours.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Das Basisproblem von Arc-Routing Problemen mit mehreren Fahrzeugen ist das Capacitated Arc-Routing Problem (CARP). Praktische Anwendungen des CARP sind z.B. in den Bereichen Müllabfuhr und Briefzustellung zu finden. Das Ziel ist es, einen kostenminimalen Tourenplan zu berechnen, bei dem alle erforderlichen Kanten bedient werden und gleichzeitig die Fahrzeugkapazität eingehalten wird. In der vorliegenden Arbeit wird ein Cut-First Branch-and-Price Second Verfahren entwickelt. In der ersten Phase werden Schnittebenen generiert, die dem Master Problem in der zweiten Phase hinzugefügt werden. Das Subproblem ist ein kürzeste Wege Problem mit Ressourcen und wird gelöst um neue Spalten für das Master Problem zu liefern. Ganzzahlige CARP Lösungen werden durch ein neues hierarchisches Branching-Schema garantiert. Umfassende Rechenstudien zeigen die Effektivität dieses Algorithmus. Kombinierte Standort- und Arc-Routing Probleme ermöglichen eine realistischere Modellierung von Zustellvarianten bei der Briefzustellung. In dieser Arbeit werden jeweils zwei mathematische Modelle für Park and Loop und Park and Loop with Curbline vorgestellt. Die Modelle für das jeweilige Problem unterscheiden sich darin, wie zulässige Transfer Routen modelliert werden. Während der erste Modelltyp Subtour-Eliminationsbedingungen verwendet, werden bei dem zweiten Modelltyp Flussvariablen und Flusserhaltungsbedingungen eingesetzt. Die Rechenstudie zeigt, dass ein MIP-Solver den zweiten Modelltyp oft in kürzerer Rechenzeit lösen kann oder bei Erreichen des Zeitlimits bessere Zielfunktionswerte liefert.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Computer simulations play an ever growing role for the development of automotive products. Assembly simulation, as well as many other processes, are used systematically even before the first physical prototype of a vehicle is built in order to check whether particular components can be assembled easily or whether another part is in the way. Usually, this kind of simulation is limited to rigid bodies. However, a vehicle contains a multitude of flexible parts of various types: cables, hoses, carpets, seat surfaces, insulations, weatherstrips... Since most of the problems using these simulations concern one-dimensional components and since an intuitive tool for cable routing is still needed, we have chosen to concentrate on this category, which includes cables, hoses and wiring harnesses. In this thesis, we present a system for simulating one dimensional flexible parts such as cables or hoses. The modeling of bending and torsion follows the Cosserat model. For this purpose we use a generalized spring-mass system and describe its configuration by a carefully chosen set of coordinates. Gravity and contact forces as well as the forces responsible for length conservation are expressed in Cartesian coordinates. But bending and torsion effects can be dealt with more effectively by using quaternions to represent the orientation of the segments joining two neighboring mass points. This augmented system allows an easy formulation of all interactions with the best appropriate coordinate type and yields a strongly banded Hessian matrix. An energy minimizing process accounts for a solution exempt from the oscillations that are typical of spring-mass systems. The use of integral forces, similar to an integral controller, allows to enforce exactly the constraints. The whole system is numerically stable and can be solved at interactive frame rates. It is integrated in the DaimlerChrysler in-house Virtual Reality Software veo for use in applications such as cable routing and assembly simulation and has been well received by users. Parts of this work have been published at the ACM Solid and Physical Modeling Conference 2006 and have been selected for the special issue of the Computer-Aided-Design Journal to the conference.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The focus of this thesis is to contribute to the development of new, exact solution approaches to different combinatorial optimization problems. In particular, we derive dedicated algorithms for a special class of Traveling Tournament Problems (TTPs), the Dial-A-Ride Problem (DARP), and the Vehicle Routing Problem with Time Windows and Temporal Synchronized Pickup and Delivery (VRPTWTSPD). Furthermore, we extend the concept of using dual-optimal inequalities for stabilized Column Generation (CG) and detail its application to improved CG algorithms for the cutting stock problem, the bin packing problem, the vertex coloring problem, and the bin packing problem with conflicts. In all approaches, we make use of some knowledge about the structure of the problem at hand to individualize and enhance existing algorithms. Specifically, we utilize knowledge about the input data (TTP), problem-specific constraints (DARP and VRPTWTSPD), and the dual solution space (stabilized CG). Extensive computational results proving the usefulness of the proposed methods are reported.