6 resultados para Van der Waals forces

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Die zwischen allen Objekten vorhandenen Wechselwirkungen können repulsiver und attraktiver Natur sein. Bei den attraktiven Kräften kommt der Bestimmung von Dispersionskräften eine besondere Bedeutung zu, da sie in allen kolloidalen Systemen vorhanden sind und entscheidenden Einfluss auf die Eigenschaften und Prozesse dieser Systeme nehmen. Eine der Möglichkeiten, Theorie und Experiment zu verbinden, ist die Beschreibung der London-Van der Waals-Wechselwirkung durch die Hamaker-Konstante, welche durch Berechnungen der Wechselwirkungsenergie zwischen Objekten erhalten werden kann. Für die Beschreibung von Oberflächenphänomenen wie Adhäsion, die in Termen der totalen potentiellen Energie zwischen Partikeln und Substrat beschrieben werden, benötigt man exakt bestimmte Hamaker-Konstanten. In der vorliegenden Arbeit wurde die asymmetrische Fluss Feld-Fluss Fraktionierung in Kombination mit einem auf dem Newton-Algorithmus basierenden Iterationsverfahren zur Bestimmung der effektiven Hamaker-Konstanten verschiedener Nanopartikeln sowie Polystyrollatex-Partikel in Toluol bzw. Wasser verwendet. Der Einfluss verschiedener Systemparameter und Partikeleigenschaften wurde im Rahmen der klassischen DLVO-Theorie untersucht.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Viele Tiere wie etwa Geckos oder Laubfrösche können mittels ihrer Haftscheiben an Oberflächen kleben. Diese Haftscheiben ermöglichen es den Tieren, sich während ihrerrnFortbewegung an Oberflächen anzuheften und wieder zu lösen unabhängig von denrnvorherrschenden Umweltbedingungen. Frösche besitzen mikro- und nanostrukturierternsowie charakteristisch geformte Haftscheiben an Finger- und Zehenenden. Ihre besonderernevolutionäre Errungenschaft, sich stark und zugleich reversibel in sowohl trockenen alsrnauch feuchten Umgebungen anzuhaften, hat die Wissenschaft zur Nachahmung und Untersuchungrndieser Strukturen inspiriert. Zum besseren Verständnis der Mechanismen vonrnAnhaftung und Loslösung bei Laubfröschen wurden weiche, elastische und mikrostrukturierternOberflächen hergestellt, indem PDMS (Polydimethylsiloxan) auf einer Siliziummaskernmit Hexagonstruktur aufgetragen und vernetzt wurde. Dadurch wurden Anordnungenrnvon hexagonalen Mikrosäulen mit spezifischen geometrischen Eigenschaften undrnunterschiedlichen Kontaktgeometrien (normale, flache Form, T-Form und konkave Formrnder Säulenenden) erhalten. Um den Einfluss der van-der-Waals, hydrodynamischen,rnKapillar-und Adhäsionskräfte zu verstehen, wurden verschiedene experimentelle Ansätzernverfolgt: Die auf eine einzelne Säule wirkenden Adhäsionskräfte wurden mittelsrnRasterkraftmikroskopie gemessen. Dazu wurden speziell hergestellte kolloidale Sensorenrnverwendet. Diese Experimente wurden sowohl mit als auch ohne Flüssigkeitsfilm auf derrnSäule durchgeführt. Die Ergebnisse zeigten den Beitrag von Kapillarkraft und direktenrnKontaktkräften zur Adhäsionskraft bei Vorliegen eines Flüssigkeitsfilms. Die Adhäsionrnfiel umso größer aus, je weniger Flüssigkeit zwischen Sensor und Säule vorhanden war.rnIm Falle einer trockenen Adhäsion zeigte die Säule mit T-Form die höchste Adhäsion. Darndie Haftscheiben der Laubfrösche weich sind, können sie dynamisch ihre Form ändern,rnwas zu einer Änderung der hydrodynamischen Kraft zwischen Scheibe und Oberflächernführt. Der Einfluss der Oberflächenverformbarkeit auf die hydrodynamische Kraft wurderndaher am Modellsystem einer Kugel untersucht, welche sich einer weichen und ebenenrnOberfläche annähert. Dieses System wurde sowohl theoretisch über die Simulation finiterrnElemente als auch experimentell über die Messung mit kolloidalen Sonden untersucht.rnSowohl experimentelle Ergebnisse als auch die Simulationen ergaben eine Abnahme derrnhydrodynamischen Kraft bei Annäherung des kolloidalen Sensors an eine weiche undrnelastische Oberfläche. Beim Entfernen der Sensors von der Oberfläche verstärkte sichrndie hydrodynamische Anziehungskraft. Die Kraft, die zur Trennung eines Partikels von einer Oberfläche in Flüssigkeit notwendig ist, ist für weiche und elastischen Oberflächenrngrößer als für harte Oberflächen. In Bezug zur Bioadhäsion bei Laubfröschen konnternfestgestellt somit festgestellt werden, dass sich der hydrodynamische Anteil zur feuchtenrnBioadhäsion aufgrund der weichen Oberfläche erhöht. Weiterhin wurde der Einflussrndes Aspektverhältnisses der Säulen auf die Reibungskraft mittels eines kolloidalen Sensorsrnuntersucht. Gestreckte Säulen zeigten dabei eine höhere Reibung im Vergleich zu.rnSäulen mit einem gestreckten Hexagon als Querschnitt.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Die supramolekularen Organisationen von 5-n-Alkoxyisophthaläuren und 2,5-Di-n-alkoxyterephthalsäuren bilden durch sekundäre Wechselwirkungen in Form van der Waals-Kräften und Wasserstoffbrückenbindungen hochgeordnete lamellare Strukturen, die sowohl mittels Röntgen-kristallgraphie als auch durch Rastertunnelmikroskopie (STM) visualisierbar sind. Diese Art der Aggregationsmuster ermöglicht den potentiell reaktiven Gruppen (Diacetylene, Zimtsäuren) in der Alkoxykette, einen optimalen Abstand und geometrische Orientierungen im Kristall einzunehmen, um lichtinduzierte Reaktionen im Festkörper durchzuführen. Einführung einer Amidgruppe an die Alkoxykette erweitert dieses Konzept, durch Erhalt einer zusätzlichen Wasserstoffbrückenbindung im hydrophoben Bereich der Organisation.Die Stabilität solche supramolekularer Aggregate kann durch Einführung semifluorierter Alkoxyketten stark beeinflußt werden, da die Inkompatibilität der pefluorierten Gruppen durch viele organische Verbindungen das Gleichgewicht nicht-kovalenter Wechselwirkung drastisch verändert. Diese Eigenschaft der semifluorierten 5-n-Alkoxyisopthalsäuren und 2,5-Di-n-alkoxyterephthalsäuren zeigt sich erstaunlicherweise jedoch nur bei einem großen Anteil des perfluorierten Alkylteils als der des nicht-perfluorierten. Da sich dann die perfluorierten Alkylteile untereinander organisieren können, erscheint die Änderung der Assoziationsstruktur von interdigitiert-lamellar zu nicht-interdigitiert-lamellar plausibel.Das gezielte Design eines neuen Organisationsmusters der 5-n-Alkoxyisophthalsäuren gelang durch Brechung der Symmetrie dieses Bausteins. Die Einführung zweier Alkoxyketten ließ die zweidimensionale Anordnung der wasserstoffbrückengebundenen Aromate unverändert, resultierte aber mit Ausbruch einer Alkoxykette aus dieser Ebene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diese Arbeit unterstreicht das Potential von Hybridfunktionalen (B3LYP) für die Untersuchung einer großen Bandbreite von Systemen. Durch die Einbeziehung der exakten Hartree-Fock Austauschenergie kann B3LYP für molekulare und kristalline Systeme eingesetzt werden. Zum Beispiel können stark korrelierte Systeme mit B3LYP erfolgreich erforscht werden. Die elektronische Struktur von PAHs wurde mit B3LYP Hybriddichtefunktionalen untersucht. Mit der ∆SCF-Methode wurden Elektronenbindungsenergien bestimmt, welche die mit UPS gewonnenen experimentellen Resultate bestätigen und ergänzen. Symmetrieeigenschaften der molekularen Orbitale wurden analysiert, um eine Zuordnung und Einschätzung der zugehörigen Signalstärke zu ermöglichen. Während σ-artige Orbitale nur schwer durch UPS-Messungen an dünnen Filmen detektiert werden können, bieten Rechnungen eine detaillierte Einsicht in die verborgenen Teile der Spektren.rnWeiterhin wurden π−π-Komplexe untersucht, welche von verschiedenen Donor- und Akzeptor-Molekülen gebildet werden. Die Moleküle basieren auf polyzyklischen, aromatischen Kohlenwasserstoffen. Für Ladungstransferkomplexe finden DFT Rechnungen ein Minimum in der Oberfläche der potentiellen Energie. Diese attraktive Wechselwirkung wird durch Coulombanziehung verursacht. Allerdings ist die Coulombanziehung nicht die stärkste Wechselwirkung in Ladungstransferkomplexen. Die Einbeziehung von van der Waals-Korrekturen verbessert den intermolekularen Abstand und die Bindungsenergie.rnEine Verkleinerung der intermolekularen Abstände führt zu einer großen Verschiebung der HOMO- und LUMO-Energie.rnAus der Klasse der kristallinen korrelierten Systeme wurden Rb4O6 und FeSe untersucht. Im Falle von Rb4O6 führen Ladungsordnung und Korrelationen zu einem isolierenden Grundzustand. Das hypothetische druckabhängige Phasendiagramm wurde untersucht. Eine Erhöhung des Drucks führt zu einer vergrößerten Bandlücke. Bei etwa 75 GPa wird die Bandbreite W größer als der Bandabstand U und das System nimmt einen homogen gemischt valenten Zustand mit teilweise besetzten π−π-Orbitalen an. Für Drücke ab 160 GPa wird W sehr viel größer als U und das System wird metallisch.rnIm Fall von FeSe finden wir eine korrelierte und isolierende Phase bei hohen Drücken, während das System bei niedrigen Drücken supraleitendes Verhalten zeigt. Die Berechnungen der Elektronenstruktur mit dem Hybridfunktional B3LYP führt zum korrekten halbleitenden Grundzustand in der NiAs- und MnP-Struktur von FeSe. Die Rolle der Korrelationen, der Stöchiometrie und der Nähe zum Magnetismus wird besprochen. Im Speziellen wird gezeigt, dass die Phase mit NiAs-Struktur starke lokale Korrelationen aufweist, was zu einem halbleitenden Zustand in einem weiten Druckbereich führt.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In den vergangenen Jahren wurden einige bislang unbekannte Phänomene experimentell beobachtet, wie etwa die Existenz unterschiedlicher Prä-Nukleations-Strukturen. Diese haben zu einem neuen Verständnis von Prozessen, die auf molekularer Ebene während der Nukleation und dem Wachstum von Kristallen auftreten, beigetragen. Die Auswirkungen solcher Prä-Nukleations-Strukturen auf den Prozess der Biomineralisation sind noch nicht hinreichend verstanden. Die Mechanismen, mittels derer biomolekulare Modifikatoren, wie Peptide, mit Prä-Nukleations-Strukturen interagieren und somit den Nukleationsprozess von Mineralen beeinflussen könnten, sind vielfältig. Molekulare Simulationen sind zur Analyse der Formation von Prä-Nukleations-Strukturen in Anwesenheit von Modifikatoren gut geeignet. Die vorliegende Arbeit beschreibt einen Ansatz zur Analyse der Interaktion von Peptiden mit den in Lösung befindlichen Bestandteilen der entstehenden Kristalle mit Hilfe von Molekular-Dynamik Simulationen.rnUm informative Simulationen zu ermöglichen, wurde in einem ersten Schritt die Qualität bestehender Kraftfelder im Hinblick auf die Beschreibung von mit Calciumionen interagierenden Oligoglutamaten in wässrigen Lösungen untersucht. Es zeigte sich, dass große Unstimmigkeiten zwischen etablierten Kraftfeldern bestehen, und dass keines der untersuchten Kraftfelder eine realistische Beschreibung der Ionen-Paarung dieser komplexen Ionen widerspiegelte. Daher wurde eine Strategie zur Optimierung bestehender biomolekularer Kraftfelder in dieser Hinsicht entwickelt. Relativ geringe Veränderungen der auf die Ionen–Peptid van-der-Waals-Wechselwirkungen bezogenen Parameter reichten aus, um ein verlässliches Modell für das untersuchte System zu erzielen. rnDas umfassende Sampling des Phasenraumes der Systeme stellt aufgrund der zahlreichen Freiheitsgrade und der starken Interaktionen zwischen Calciumionen und Glutamat in Lösung eine besondere Herausforderung dar. Daher wurde die Methode der Biasing Potential Replica Exchange Molekular-Dynamik Simulationen im Hinblick auf das Sampling von Oligoglutamaten justiert und es erfolgte die Simulation von Peptiden verschiedener Kettenlängen in Anwesenheit von Calciumionen. Mit Hilfe der Sketch-Map Analyse konnten im Rahmen der Simulationen zahlreiche stabile Ionen-Peptid-Komplexe identifiziert werden, welche die Formation von Prä-Nukleations-Strukturen beeinflussen könnten. Abhängig von der Kettenlänge des Peptids weisen diese Komplexe charakteristische Abstände zwischen den Calciumionen auf. Diese ähneln einigen Abständen zwischen den Calciumionen in jenen Phasen von Calcium-Oxalat Kristallen, die in Anwesenheit von Oligoglutamaten gewachsen sind. Die Analogie der Abstände zwischen Calciumionen in gelösten Ionen-Peptid-Komplexen und in Calcium-Oxalat Kristallen könnte auf die Bedeutung von Ionen-Peptid-Komplexen im Prozess der Nukleation und des Wachstums von Biomineralen hindeuten und stellt einen möglichen Erklärungsansatz für die Fähigkeit von Oligoglutamaten zur Beeinflussung der Phase des sich formierenden Kristalls dar, die experimentell beobachtet wurde.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis different approaches for the modeling and simulation of the blood protein fibrinogen are presented. The approaches are meant to systematically connect the multiple time and length scales involved in the dynamics of fibrinogen in solution and at inorganic surfaces. The first part of the thesis will cover simulations of fibrinogen on an all atom level. Simulations of the fibrinogen protomer and dimer are performed in explicit solvent to characterize the dynamics of fibrinogen in solution. These simulations reveal an unexpectedly large and fast bending motion that is facilitated by molecular hinges located in the coiled-coil region of fibrinogen. This behavior is characterized by a bending and a dihedral angle and the distribution of these angles is measured. As a consequence of the atomistic detail of the simulations it is possible to illuminate small scale behavior in the binding pockets of fibrinogen that hints at a previously unknown allosteric effect. In a second step atomistic simulations of the fibrinogen protomer are performed at graphite and mica surfaces to investigate initial adsorption stages. These simulations highlight the different adsorption mechanisms at the hydrophobic graphite surface and the charged, hydrophilic mica surface. It is found that the initial adsorption happens in a preferred orientation on mica. Many effects of practical interest involve aggregates of many fibrinogen molecules. To investigate such systems, time and length scales need to be simulated that are not attainable in atomistic simulations. It is therefore necessary to develop lower resolution models of fibrinogen. This is done in the second part of the thesis. First a systematically coarse grained model is derived and parametrized based on the atomistic simulations of the first part. In this model the fibrinogen molecule is represented by 45 beads instead of nearly 31,000 atoms. The intra-molecular interactions of the beads are modeled as a heterogeneous elastic network while inter-molecular interactions are assumed to be a combination of electrostatic and van der Waals interaction. A method is presented that determines the charges assigned to beads by matching the electrostatic potential in the atomistic simulation. Lastly a phenomenological model is developed that represents fibrinogen by five beads connected by rigid rods with two hinges. This model only captures the large scale dynamics in the atomistic simulations but can shed light on experimental observations of fibrinogen conformations at inorganic surfaces.