2 resultados para VAC

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Die vorliegende Arbeit ist ein Teil des Projektes Flut und Hitze des Kompetenzzentrums Überflutung an der Universität Mainz. Die Ziele dieser Untersuchung waren: Die Artzusammensetzung und Phänologien der Spinnengemeinschaften von Uferhabitaten bei Mainz (Rheinland-Pfalz, Deutschland) zu ermitteln, anhand des Artenspektrums die Folgen langjähriger Trockenheit und die Auswirkungen des Extremsommers 2003 zu beschreiben, Einflüsse von Überflutungen festzustellen und die Submersionstoleranzen ausgewählter Arten zu bestimmen. Insgesamt wurden 27783 Spinnen aus 179 Arten und 24 Familien bearbeitet. Die Untersuchung umfasste einen Hartholzauwald bei Ingelheim am Rhein, den Hochwasserschutzpolder Ingelheim, sowie Tiermaterial von vier weiteren Uferstandorten und drei Inselstandorten des Rheins bei Mainz. Die Beprobung der Hartholzaue mit Barberfallen und Stammeklektoren erfolgte von Mai 2005 bis Mai 2008. Im Polder wurden von Oktober 2006 bis Mai 2008 mit Barberfallen und einem Vakuumsauger gefangen. Die Proben der weiteren Standorte stammten aus Barberfallenfängen der Jahre 2000 bis einschließlich 2005. In der seit Winter 2002/2003 nicht mehr überfluteten und im Sommer stark austrocknenden Hartholzaue wurde eine als xerotolerant zu bezeichnende Spinnenfauna vorgefunden. Dies galt insbesondere für die sehr artenreiche Stammregion. Zu den dominierenden Spezies zählten: Diplostyla concolor (Boden), Clubiona pallidula und Textrix denticulata (beide Stamm). Der Polder Ingelheim wurde überwiegend von euryöken Freilandbewohnern besiedelt, dominant kamen Oedothorax apicatus und Pardosa agrestis vor. Das Tiermaterial der Ufer- und Inselstandorte wies deutliche Unterschiede in der Artenzusammensetzung im Bezug auf die Flutungsintensität auf. Nach dem Ausbleiben von Hochwässern und dem starken Austrocknen der Standorte im Sommer 2003 wurden hygrobionte Arten wie Allomengea vidua kaum mehr vorgefunden, während sich xerotolerante Spezies ausbreiteten. Darüber hinaus wurden die Submersionstoleranzen ausgewählter Spinnenarten im Labor ermittelt. Die gewonnenen Daten lassen Vermuten, dass die getesteten Spinnenspezies durchaus in der Lage sind, bei niedrigen Wassertemperaturen eine kurze Flut submers zu überstehen. Unter hohen Temperaturen besteht dagegen keine Submersionstoleranz.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CIGS-Dünnschichtsolarzellen verbinden hohe Effizienz mit niedrigen Kosten und sind damit eine aussichtsreiche Photovoltaik-Technologie. Das Verständnis des Absorbermaterials CIGS ist allerdings noch lückenhaft und benötigt weitere Forschung. In dieser Dissertation werden Computersimulationen vorgestellt, die erheblich zum besseren Verständnis von CIGS beitragen. Es wurden die beiden Systeme Cu(In,Ga)Se2 und (Cu,In,Vac)Se betrachtet. Die Gesamtenergie der Systeme wurde in Clusterentwicklungen ausgedrückt, die auf der Basis von ab initio Dichtefunktionalrechnungen erstellt wurden. Damit war es möglich Monte Carlo (MC)-Simulationen durchzuführen. Kanonische MC-Simulationen von Cu(In,Ga)Se2 zeigen das temperaturabhängige Verhalten der In-Ga-Verteilung. In der Nähe der Raumtemperatur findet ein Übergang von einer geordneten zu einer ungeordneten Phase statt. Unterhalb separiert das System in CuInSe2 und CuGaSe2. Oberhalb existiert eine gemischte Phase mit inhomogen verteilten In- und Ga-Clustern. Mit steigender Temperatur verkleinern sich die Cluster und die Homogenität nimmt zu. Bei allen Temperaturen, bis hin zur Produktionstemperatur der Solarzellen (¼ 870 K), ist In-reiches CIGS homogener als Ga-reiches CIGS. Das (Cu,In,Vac)Se-System wurde mit kanonischen und großkanonischen MC-Simulationen untersucht. Hier findet sich für das CuIn5Se8-Teilsystem ein Übergang von einer geordneten zu einer ungeordneten Phase bei T0 = 279 K. Großkanonische Simulationen mit vorgegebenen Werten für die chemischen Potentiale von Cu und In wurden verwendet, um die Konzentrations- Landschaft und damit die sich ergebenden Stöchiometrien zu bestimmen. Stabilitätsbereiche wurden für stöchiometrisches CuInSe2 und für die Defektphasen CuIn5Se8 und CuIn3Se5 bei einer Temperatur von 174 K identifiziert. Die Bereiche für die Defektphasen sind bei T = 696 K verschwunden. Die Konzentrations-Landschaft reproduziert auch die leicht Cu-armen Stöchiometrien, die bei Solarzellen mit guten Effizienzen experimentell beobachtet werden. Die Simulationsergebnisse können verwendet werden, um den industriellen CIGS-Produktionspr