4 resultados para Transducer linearizer
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Nozizeptive Spinalganglienneurone detektieren mit einer Vielzahl liganden- und spannungsgesteuerter Ionenkanäle noxische Reize, d.h. Reize, die eine Gewebeschädigung bewirken können, wandeln sie in Aktionspotenzialentladungen um und leiten sie über das Rückenmark zum Gehirn weiter, wo eine Schmerzempfindung ausgelöst wird. Die pronozizeptiven transienten Rezeptor-Potenzial-Kanäle der Vanilloidrezeptorfamilie, TRPV1 und TRPV2, sind die klassischen Transduktionsmoleküle für noxische Hitzereize in den Spinalganglien und werden von Reiztemperaturen über 43°C bzw. 52°C aktiviert. Daneben finden sich auch antinozizeptive Membranproteine, wie z.B. der metabotrope Cannabinoidrezeptor CB1. Er koppelt an spannungsgesteuerte Kaliumkanäle, die neben Natrium- und Kalziumkanälen ebenfalls an der neuronalen Erregbarkeit beteiligt sind. Von den spannungsgesteuerten Kaliumkanälen könnte der Kv1.4, der einen schnell inaktivierenden A-Strom vermittelt, an antinozizeptiven Signalwegen beteiligt sein. Um die molekulare Physiologie der Regulation von Nozizeption und Antinozizeption zu charakterisieren, wurde die Expression bzw. Ko-Expression dieser Membranproteine auf der einen als auch die funktionelle Charakterisierung von TRPV1 auf der anderen Seite im Soma der Spinalganglienneurone und im heterologen Expressionssystem untersucht. TRPV1 wurde in je einem Drittel und TRPV2 in je einem Zehntel aller Spinalganglienneurone nachgewiesen. Das Expressionsmuster veränderte sich nicht zwischen verschiedenen Präparationsmethoden, die zur Aufarbeitung der Zellen für unterschiedliche experimentelle Ansätze notwendig sind. Somit können die aus Expressionsanalysen und funktionellen Untersuchungen gewonnenen Ergebnisse miteinander verglichen werden. Obwohl TRPV1 und TRPV2 in unterschiedlich großen Zellen exprimiert werden, überlappen dennoch ihre Größenverteilungen. Durch Ko-Expressionsanalysen konnten hier erstmalig TRPV1-TRPV2-ko-exprimierende Neurone detektiert werden. Mit dem neu entwickelten N-terminalen Antikörper gegen TRPV1 (3C11) konnte gezeigt werden, dass für TRPV1 verschiedene Splice-Varianten existieren. Neben den bereits bekannten Splice-Varianten wurde hier die neue Variante Vr.3’sv isoliert. Diese besitzt zwischen Exon 15 und 16 eine Insertion aus 104 Basen und exprimiert daher einen veränderten C-Terminus. Trotz dieser Veränderung bildeten sich im heterologen Expressionssystem funktionelle Kanäle aus, die im Gegensatz zu den anderen Varianten immer noch durch Capsaicin aktivierbar waren. Vr.3’sv könnte als Homo- oder Heterotetramer die Eigenschaften TRPV1-positiver Neurone beeinflussen. Bei der Bestimmung der Häufigkeit von TRPV1 in einem Gewebe ist somit die Wahl des Antikörpers von entscheidender Bedeutung. Für TRPV2 dagegen gibt es hier keine Hinweise auf Splice-Varianten. TRPV1 wird durch das Vanilloid Capsaicin aktiviert, wobei diese Substanz neurotoxisch ist und eine Degeneration von Neuronen und epidermalen Nervenfasern bewirkt. Hier wurde nun gezeigt, dass unabhängig von den Splice-Varianten nicht alle TRPV1-positiven Neurone bei langer Inkubationszeit absterben. Funktionelle Untersuchungen belegten, dass auch Capsaicin-sensitive Zellen unter dem Einfluss des Agonisten überleben können. Dieser Schutzmechanismus wird möglicherweise von den verschiedenen Splice-Varianten vermittelt. Ko-Expressionsanalysen zeigten, dass der spannungsgesteuerte Kaliumkanal Kv1.4 in nahezu allen TRPV1- aber nicht TRPV2-positiven Neuronen exprimiert wird. Desweiteren ko-exprimierten nahezu alle TRPV1-positiven Neurone auch den Cannabinoidrezeptor CB1. Diese fast vollständige Ko-Lokalisation von CB1 und Kv1.4 in nozizeptiven Spinalganglienneuronen spricht für eine funktionell synergistische Aktivität. Der Kaliumkanal kann unter der regulativen Kontrolle von CB1 als Vermittler von A-Typ-Kaliumströmen an der Kontrolle der repetitiven Entladungen in der Peripherie und der Transmitterausschüttung zentral beteiligt sein. Es ergeben sich daraus Ansatzpunkte für die Entwicklung neuer Medikamente. Mit Kv1.4-Aktivatoren und/oder peripher wirkenden Cannabinoiden könnten die Nebenwirkungen der Cannabinoide im zentralen Nervensystem umgangen werden.
Resumo:
It is currently widely accepted that the understanding of complex cell functions depends on an integrated network theoretical approach and not on an isolated view of the different molecular agents. Aim of this thesis was the examination of topological properties that mirror known biological aspects by depicting the human protein network with methods from graph- and network theory. The presented network is a partial human interactome of 9222 proteins and 36324 interactions, consisting of single interactions reliably extracted from peer-reviewed scientific publications. In general, one can focus on intra- or intermodular characteristics, where a functional module is defined as "a discrete entity whose function is separable from those of other modules". It is found that the presented human network is also scale-free and hierarchically organised, as shown for yeast networks before. The interactome also exhibits proteins with high betweenness and low connectivity which are biologically analyzed and interpreted here as shuttling proteins between organelles (e.g. ER to Golgi, internal ER protein translocation, peroxisomal import, nuclear pores import/export) for the first time. As an optimisation for finding proteins that connect modules, a new method is developed here based on proteins located between highly clustered regions, rather than regarding highly connected regions. As a proof of principle, the Mediator complex is found in first place, the prime example for a connector complex. Focusing on intramodular aspects, the measurement of k-clique communities discriminates overlapping modules very well. Twenty of the largest identified modules are analysed in detail and annotated to known biological structures (e.g. proteasome, the NFκB-, TGF-β complex). Additionally, two large and highly interconnected modules for signal transducer and transcription factor proteins are revealed, separated by known shuttling proteins. These proteins yield also the highest number of redundant shortcuts (by calculating the skeleton), exhibit the highest numbers of interactions and might constitute highly interconnected but spatially separated rich-clubs either for signal transduction or for transcription factors. This design principle allows manifold regulatory events for signal transduction and enables a high diversity of transcription events in the nucleus by a limited set of proteins. Altogether, biological aspects are mirrored by pure topological features, leading to a new view and to new methods that assist the annotation of proteins to biological functions, structures and subcellular localisations. As the human protein network is one of the most complex networks at all, these results will be fruitful for other fields of network theory and will help understanding complex network functions in general.
Resumo:
Monoclonal antibodies have emerged as one of the most promising therapeutics in oncology over the last decades. The generation of fully human tumorantigen-specific antibodies suitable for anti-tumor therapy is laborious and difficult to achieve. Autoreactive B cells expressing those antibodies are detectable in cancer patients and represent a suitable source for human antibodies. However, the isolation and cultivation of this cell type is challenging. A novel method was established to identify antigen-specific B cells. The method is based on the conversion of the antigen independent CD40 signal into an antigen-specific one. For that, the artificial fusion proteins ABCos1 and ABCos2 (Antigen-specific B cell co-stimulator) were generated, which consist of an extracellular association-domain derived from the constant region of the human immunoglobulin (Ig) G1, a transmembrane fragment and an intracellular signal transducer domain derived of the cytoplasmic domain of the human CD40 receptor. By the association with endogenous Ig molecules the heterodimeric complex allows the antigen-specific stimulation of both the BCR and CD40. In this work the ability of the ABCos constructs to associate with endogenous IgG molecules was shown. Moreover, crosslinking of ABCos stimulates the activation of NF-κB in HEK293-lucNifty and induces proliferation in B cells. The stimulation of ABCos in transfected B cells results in an activation pattern different from that induced by the conventional CD40 signal. ABCos activated B cells show a mainly IgG isotype specific activation of memory B cells and are characterized by high proliferation and the differentiation into plasma cells. To validate the approach a model system was conducted: B cells were transfected with IVT-RNA encoding for anti-Plac1 B cell receptor (antigen-specific BCR), ABCos or both. The stimulation with the BCR specific Plac1 peptide induces proliferation only in the cotransfected B cell population. Moreover, we tested the method in human IgG+ memory B cells from CMV infected blood donors, in which the stimulation of ABCos transfected B cells with a CMV peptide induces antigen-specific expansion. These findings show that challenging ABCos transfected B cells with a specific antigen results in the activation and expansion of antigen-specific B cells and not only allows the identification but also cultivation of these B cells. The described method will help to identify antigen-specific B cells and can be used to characterize (tumor) autoantigen-specific B cells and allows the generation of fully human antibodies that can be used as diagnostic tool as well as in cancer therapy.
Resumo:
Rodents are most useful models to study physiological and pathophysiological processes in early development, because they are born in a relatively immature state. However, only few techniques are available to monitor non-invasively heart frequency and respiratory rate in neonatal rodents without restraining or hindering access to the animal. Here we describe experimental procedures that allow monitoring of heart frequency by electrocardiography (ECG) and breathing rate with a piezoelectric transducer (PZT) element without hindering access to the animal. These techniques can be easily installed and are used in the present study in unrestrained awake and anesthetized neonatal C57/Bl6 mice and Wistar rats between postnatal day 0 and 7. In line with previous reports from awake rodents we demonstrate that heart rate in rats and mice increases during the first postnatal week. Respiratory frequency did not differ between both species, but heart rate was significantly higher in mice than in rats. Further our data indicate that urethane, an agent that is widely used for anesthesia, induces a hypoventilation in neonates whilst heart rate remains unaffected at a dose of 1 g per kg body weight. Of note, hypoventilation induced by urethane was not detected in rats at postnatal 0/1. To verify the detected hypoventilation we performed blood gas analyses. We detected a respiratory acidosis reflected by a lower pH and elevated level in CO2 tension (pCO2) in both species upon urethane treatment. Furthermore we found that metabolism of urethane is different in P0/1 mice and rats and between P0/1 and P6/7 in both species. Our findings underline the usefulness of monitoring basic cardio-respiratory parameters in neonates during anesthesia. In addition our study gives information on developmental changes in heart and breathing frequency in newborn mice and rats and the effects of urethane in both species during the first postnatal week.