3 resultados para Time since immigration

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Zahnverlust zu Lebzeiten („antemortem tooth loss“, AMTL) kann als Folge von Zahnerkrankungen, Traumata, Zahnextraktionen oder extremer kontinuierlicher Eruption sowie als Begleiterscheinung fortgeschrittener Stadien von Skorbut oder Lepra auftreten. Nach dem Zahnverlust setzt die Wundheilung als Sekundärheilung ein, während der sich die Alveole mit Blut füllt und sich ein Koagulum bildet. Anschließend erfolgt dessen Umwandlung in Knochengewebe und schließlich verstreicht die Alveole derart, dass sie makroskopisch nicht mehr erkannt werden kann. Der Zeitrahmen der knöchernen Konsolidierung des Kieferkammes ist im Detail wenig erforscht. Aufgrund des gehäuften Auftretens von AMTL in menschlichen Populationen, ist die Erarbeitung eines Zeitfensters, mit dessen Hilfe durch makroskopische Beobachtung des Knochens die Zeitspanne seit dem Zahnverlust („time since tooth loss“, TSL) ermittelt werden kann, insbesondere im archäologischen Kontext äußerst wertvoll. Solch ein Zeitschema mit Angaben über die Variabilität der zeitlichen Abläufe bei den Heilungsvorgängen kann nicht nur in der Osteologie, sondern auch in der Forensik, der allgemeinen Zahnheilkunde und der Implantologie nutzbringend angewandt werden. rnrnNach dem Verlust eines Zahnes wird das Zahnfach in der Regel durch ein Koagulum aufgefüllt. Das sich bildende Gewebe wird rasch in noch unreifen Knochen umgewandelt, welcher den Kieferknochen und auch die angrenzenden Zähne stabilisiert. Nach seiner Ausreifung passt sich das Gewebe schließlich dem umgebenden Knochen an. Das Erscheinungsbild des Zahnfaches während dieses Vorgangs durchläuft verschiedene Stadien, welche in der vorliegenden Studie anhand von klinischen Röntgenaufnahmen rezenter Patienten sowie durch Untersuchungen an archäologischen Skelettserien identifiziert wurden. Die Heilungsvorgänge im Zahnfach können in eine prä-ossale Phase (innerhalb einer Woche nach Zahnverlust), eine Verknöcherungsphase (etwa 14 Wochen nach Zahnverlust) und eine ossifizierte bzw. komplett verheilte Phase (mindestens 29 Wochen nach Zahnverlust) eingeteilt werden. Etliche Faktoren – wie etwa die Resorption des Interdentalseptums, der Zustand des Alveolarknochens oder das Individualgeschlecht – können den normalen Heilungsprozess signifikant beschleunigen oder hemmen und so Unterschiede von bis zu 19 Wochen verursachen. Weitere Variablen wirkten sich nicht signifikant auf den zeitlichen Rahmen des Heilungsprozesse aus. Relevante Abhängigkeiten zwischen verschiedenen Variabeln wurden ungeachtet der Alveolenauffüllung ebenfalls getestet. Gruppen von unabhängigen Variabeln wurden im Hinblick auf Auffüllungsgrad und TSL in multivariablen Modellen untersucht. Mit Hilfe dieser Ergebnisse ist eine grobe Einschätzung der Zeitspanne nach einem Zahnverlust in Wochen möglich, wobei die Einbeziehung weiterer Parameter eine höhere Präzision ermöglicht. rnrnObwohl verschiedene dentale Pathologien in dieser Studie berücksichtigt wurden, sollten zukünftige Untersuchungen genauer auf deren potenzielle Einflussnahme auf den alveolaren Heilungsprozess eingehen. Der kausale Zusammenhang einiger Variablen (wie z. B. Anwesenheit von Nachbarzähnen oder zahnmedizinische Behandlungen), welche die Geschwindigkeit der Heilungsrate beeinflussen, wäre von Bedeutung für zukünftige Untersuchungen des oralen Knochengewebes. Klinische Vergleichsstudien an forensischen Serien mit bekannter TSL oder an einer sich am Anfang des Heilungsprozesses befindlichen klinischen Serie könnten eine Bekräftigung dieser Ergebnisse liefern.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this treatise we consider finite systems of branching particles where the particles move independently of each other according to d-dimensional diffusions. Particles are killed at a position dependent rate, leaving at their death position a random number of descendants according to a position dependent reproduction law. In addition particles immigrate at constant rate (one immigrant per immigration time). A process with above properties is called a branching diffusion withimmigration (BDI). In the first part we present the model in detail and discuss the properties of the BDI under our basic assumptions. In the second part we consider the problem of reconstruction of the trajectory of a BDI from discrete observations. We observe positions of the particles at discrete times; in particular we assume that we have no information about the pedigree of the particles. A natural question arises if we want to apply statistical procedures on the discrete observations: How can we find couples of particle positions which belong to the same particle? We give an easy to implement 'reconstruction scheme' which allows us to redraw or 'reconstruct' parts of the trajectory of the BDI with high accuracy. Moreover asymptotically the whole path can be reconstructed. Further we present simulations which show that our partial reconstruction rule is tractable in practice. In the third part we study how the partial reconstruction rule fits into statistical applications. As an extensive example we present a nonparametric estimator for the diffusion coefficient of a BDI where the particles move according to one-dimensional diffusions. This estimator is based on the Nadaraya-Watson estimator for the diffusion coefficient of one-dimensional diffusions and it uses the partial reconstruction rule developed in the second part above. We are able to prove a rate of convergence of this estimator and finally we present simulations which show that the estimator works well even if we leave our set of assumptions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wir betrachten Systeme von endlich vielen Partikeln, wobei die Partikel sich unabhängig voneinander gemäß eindimensionaler Diffusionen [dX_t = b(X_t),dt + sigma(X_t),dW_t] bewegen. Die Partikel sterben mit positionsabhängigen Raten und hinterlassen eine zufällige Anzahl an Nachkommen, die sich gemäß eines Übergangskerns im Raum verteilen. Zudem immigrieren neue Partikel mit einer konstanten Rate. Ein Prozess mit diesen Eigenschaften wird Verzweigungsprozess mit Immigration genannt. Beobachten wir einen solchen Prozess zu diskreten Zeitpunkten, so ist zunächst nicht offensichtlich, welche diskret beobachteten Punkte zu welchem Pfad gehören. Daher entwickeln wir einen Algorithmus, um den zugrundeliegenden Pfad zu rekonstruieren. Mit Hilfe dieses Algorithmus konstruieren wir einen nichtparametrischen Schätzer für den quadrierten Diffusionskoeffizienten $sigma^2(cdot),$ wobei die Konstruktion im Wesentlichen auf dem Auffüllen eines klassischen Regressionsschemas beruht. Wir beweisen Konsistenz und einen zentralen Grenzwertsatz.