5 resultados para Thermogravimetric Analysis (TGA)

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on a strategy to prepare metal oxides including binary oxide and mixed metal oxide (MMO) in form of nanometer-sized particles using polymer as precursor. Zinc oxide nanoparticles are prepared as an example. The obtained zinc polyacrylate precursor is amorphous as confirmed by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The conversion from polymer precursor to ZnO nanocrystals by thermal pyrolysis was investigated by means of XRD, thermogravimetric analysis (TGA) and electron microscopy. The as-synthesized ZnO consists of many individual particles with a diameter around 40 nm as shown by scanning electron microscopy (SEM). The photoluminescence (PL) and electron paramagnetic (EPR) properties of the material are investigated, too. Employing this method, ZnO nanocrystalline films are fabricated via pyrolysis of a zinc polyacrylate precursor film on solid substrate like silicon and quartz glass. The results of XRD, absorption spectra as well as TEM prove that both the ZnO nanopowder and film undergo same evolution process. Comparing the PL properties of films fabricated in different gas atmosphere, it is assigned that the blue emission of the ZnO films is due to crystal defect of zinc vacancy and green emission from oxygen vacancy. Two kinds of ZnO-based mixed metal oxide (Zn1-xMgxO and Zn1-xCoxO) particles with very precise stoichiometry are prepared by controlled pyrolysis of the corresponding polymer precursor at 550 oC. The MMO crystal particles are typically 20-50 nm in diameter. Doping of Mg in ZnO lattice causes shrinkage of lattice parameter c, while it remains unchanged with Co incorporation. Effects of bandgap engineering are seen in the Mg:ZnO system. The photoluminescence in the visible is enhanced by incorporation of magnesium on zinc lattice sites, while the emission is suppressed in the Co:ZnO system. Magnetic property of cobalt doped-ZnO is checked too and ferromagnetic ordering was not found in our samples. An alternative way to prepare zinc oxide nanoparticles is presented upon calcination of zinc-loaded polymer precursors, which is synthesized via inverse miniemulsion polymerization of the mixture of the acrylic acid and zinc nitrate. The as-prepared ZnO product is compared with that obtained from polymer-salt complex method. The obtained ZnO nanoparticles undergo surface modification via a phosphate modifier applying ultrasonication. The morphology of the modified particles is checked by SEM. And stability of the ZnO nanoparticles in aqueous dispersion is enhanced as indicated by the zeta-potential results.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The separator membrane in batteries and fuel cells is of crucial importance for the function of these devices. In lithium ion batteries the separator membrane as well as the polymer matrix of the electrodes consists of polymer electrolytes which are lithium ion conductors. To overcome the disadvantage of currently used polymer electrolytes which are highly swollen with liquids and thus mechanically and electrochemically unstable, the goal of this work is a new generation of solid polymer electrolytes with a rigid backbone and a soft side chain structure. Moreover the novel material should be based on cheap substrates and its synthesis should not be complicated aiming at low overall costs. The new materials are based on hydroxypropylcellulose and oligoethyleneoxide derivatives as starting materials. The grafting of the oligoethyleneoxide side chains onto the cellulose was carried out following two synthetic methods. One is based on a bromide derivative and another based on p-toluolsulfonyl as a leaving group. The side chain reagents were prepared form tri(ethylene glycol) monoethyl ether. In order to improve the mechanical properties the materials were crosslinked. Two different conceptions have been engaged based on either urethane chemistry or photosensitive dimethyl-maleinimide derivatives. PEO - graft - cellulose derivatives with a high degree of substitution between 2,9 and 3,0 were blended with lithium trifluoromethane-sulfonate, lithium bis(trifluorosulfone)imide and lithium tetrafluoroborate. The molar ratios were in the range from 0,02 to 0,2 [Li]/[O]. The products have been characterized with nuclear magnetic resonance (NMR), gel permeation chromatography (GPC) and laserlight scattering (LS) with respect to their degree of substitution and molecular weight. The effect of salt concentration on ionic conductivity, thermal behaviour and morphology has been investiga-ted with impedance spectroscopy, differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). The crosslinking reactions were controlled with dynamic mechanical analysis (DMS). The degree of substitution of our products is varying between 2,8 and 3,0 as determined by NMR. PEO - graft - cellulose derivatives are highly viscous liquids at room temperature with glass transition temperatures around 215 K. The glass transition temperature for the Lithium salt complexes of PEO - graft - cellulose deri-vatives increase with increasing salt content. The maximum conductivity at room temperature is about 10-4 and at 100°C around 10-3 Scm-1. The presence of lithium salt decreases the thermal stability of the complexes in comparison to pure PEO - graft - cellulose derivatives. Complexes heated over 140 – 150°C completely lose their ionic conductivity. The temperature dependence of the conductivity presented as Arrhenius-type plots for all samples is similar in shape and follows a VTF behaviour. This proofs that the ionic transport is closely related to the segmental motions of the polymer chains. Novel cellulose derivatives with grafted oligoethylen-oxide side chains with well-defined chemical structure and high side chain grafting density have been synthesized. Cellulose was chosen as stiff, rod like macromolecule for the backbone while oligoethylen-oxides are chosen as flexible side chains. A maximum grafting density of 3.0 have been obtained. The best conductivity reaches 10-3 Scm-1 at 100°C for a Li-triflate salt complex with a [Li]/[O] ratio of 0.8. The cross-linked complexes containing the lithium salts form elastomeric films with convenient mechanical stability. Our method of cellulose modification is based on relatively cheap and commercially available substrates and as such appears to be a promising alternative for industrial applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Im Rahmen dieser Arbeit wurden neue Ansätze für das Konzept der kapselbasierten Selbstheilungsmaterialien untersucht. Die Verkapselung von Selbstheilungsreagenzien in funktionellen Nanokapseln wurde dabei mittels drei verschiedener Herstellungsmethoden in Miniemulsion durchgeführt. Zunächst wurde die Synthese von Kern-Schale-Partikeln mit verkapselten Monomeren für die Ringöffnungs-Metathese-Polymerisation über freie radikalische Polymerisation in Miniemulsionstropfen beschrieben. Durch orthogonale Reaktionen wurden dabei verschiedene chemische Funktionalisierungen in die Schale eingebracht. Die Rolle des Tensides, das Verhältnis von Kernmaterial zu Monomer sowie die Variation der Lösungsmittelqualität hatte dabei einen Einfluss auf die Struktur der Kolloide. Die Heilungsreagenzien blieben auch nach der Verkapselung aktiv, was durch erfolgreich durchgeführte Selbstheilungsexperimente gezeigt werden konnte. Im zweiten Abschnitt wurde die Synthese von Silica-Nanocontainern für Selbstheilungsmaterialien über Hydrolyse und Polykondensation von Alkoxysilanen an der Grenzfläche der Miniemulsionstropfen beschrieben. Dieser Ansatz ermöglichte die effiziente Verkapselung sowohl von Monomeren als auch von Lösungen der Katalysatoren für die Metathese-Polymerisation in einem Einstufenprozess. Die Größe der Kapseln, die Dicke der Schale und der Feststoffgehalt der Dispersionen konnte dabei in einem weiten Bereich variiert werden. Anhand von erfolgreich durchgeführten Selbstheilungsreaktionen, die über Thermogravimetrie und 13C-NMR-Spektroskopie verfolgt wurden, konnte gezeigt werden, dass die Selbstheilungsreagenzien nach der Verkapselung aktiv blieben. Das dritte Konzept behandelte die Herstellung von polymeren Nanokapseln mittels Emulsions-Lösungsmittelverdampfungstechnik, welche eine milde Methode zur Verkapselung darstellt. Es wurde eine allgemeine und einfache Vorgehensweise beschrieben, in der Selbstheilungsreagenzien in polymeren Nanokapseln unter Verwendung von kommerziell erhältlichen Polymeren als Schalenmaterial verkapselt wurden. Zudem wurden Copolymere aus Styrol und verschiedenen hydrophilen Monomeren über freie radikalische Polymerisation sowie über polymeranaloge Reaktionen hergestellt. Diese statistischen Copolymere waren ebenso wie Blockcopolymere zur Herstellung von wohldefinierten Kern-Schale-Nanopartikeln mittels Emulsions-Lösungsmittelverdampfungsprozess geeignet. rnrnDes Weiteren wurde ein neues Konzept für die Synthese von pH-responsiven Nanokapseln aus tensidfreien Emulsionen unter Verwendung von Copolymeren aus Styrol und Trimethylsilylmethacrylat beschrieben. Der vorgeschlagene synthetische Ansatz ermöglicht dabei die erste Synthese von Nanokapseln über den Emulsions-Lösungsmittelverdampfungsprozess in Abwesenheit eines Tensides. Eine vollständig reversible Aggregation ermöglichte eine leichte Trennung der Nanokapseln von der kontinuierlichen Phase sowie eine Erhöhung der Konzentration der Nanokapseldispersionen auf das bis zu fünffache. Darüber hinaus war es möglich, Selbstheilungsreagenzien in stabilem Zustand zu verkapseln. Abschließend wurde die elektrochemische Abscheidung von mit Monomer gefüllten Nanokapseln in eine Zinkschicht zur Anwendung im Korrosionsschutz behandelt.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In dieser Arbeit wurde gezeigt, wie oberflächenfunktionalisierte Polystyrolnanopartikel zur Herstellung von Metallchalkogenid/Polymer-Hybridnanopartikeln eingesetzt werden können. Dazu wurden zunächst phosphonsäure- und phosphorsäurefunktionalisierte Surfmere synthetisiert, die anschließend bei der Miniemulsionspolymerisation von Styrol verwendet wurden. Die Surfmere dienten dabei zugleich zur Stabilisierung und als Comonomer. Die oberflächenfunktionalisierten Polystyrolnanopartikel wurden anschließend als Trägerpartikel für die Kristallisation von Metalloxiden eingesetzt. Dabei wurden Metalloxid/Polymer-Hybridnanopartikel mit einer „himbeerartigen“ Morphologie erhalten. Um die vielseitige Modifizierbarkeit der phosphonat- und phosphat¬funktionalisierten Polystyrolpartikel zu demonstrieren, wurden Cer-, Eisen- sowie Zinkoxid auf der Partikeloberfläche kristallisiert. Dazu wurden sowohl wässrige als auch alkoholische Metalloxid-Präkursorlösungen eingesetzt. Die synthetisierten Metall¬oxid/Polymer-Hybridpartikel wurden detailliert mit REM, TEM und PXRD analysiert. Die Untersuchung des Kristallisationsmechanismus hatte erwiesen, dass die komplexierten Metallkationen auf der Partikeloberfläche als Nukleationszentren wirkten und die Zutropfrate des Fällungsreagenz entscheidend für die Oberflächenkristallisation ist. Durch Mischungsexperimente von Metalloxidnanopartikeln und den oberflächen¬funktionalisierten Polymerpartikeln konnte die Hybridpartikelbildung über Hetero¬koagulation ausgeschlossen werden. Außerdem wurde festgestellt, dass die Polarität der funktionellen Gruppe über die Stärke der Komplexierung der Metalloxid-Präkursor bestimmt. Darüber hinaus wurde ein Modell zur Erklärung der kolloidalen Stabilisierung der Metalloxid/Polymer-Hybridsysteme aufgestellt und ein Zusammenhang zwischen dem gemessenen Zeta-Potential und der Oberflächenbedeckung der Polymerpartikel durch Metalloxid gefunden. Mit der Methode der Oberflächenkristallisation konnten frühe Stadien der Nukleation auf der Partikeloberfläche fixiert werden. Weiterhin wurden die individuellen physikalisch-chemischen Eigenschaften der hergestellten Metall¬oxid/Polymer-Hybridnano¬partikel untersucht. Dabei zeigten die CeO2/Polymer-Hybridpartikel eine hohe katalytische Aktivität bezüglich der photokatalytischen Oxidation von Rhodamin B, die als Modellreaktion durchgeführt wurde. Des Weiteren wurde die Magnetisierung der Magnetit/Polymer-Hybridpartikel gemessen. Die Fe3O4-Hybrid¬partikelsysteme wiesen eine vergleichbare Sättigungsmagnetisierung auf. Die Zinkoxid/Polymer-Hybridsysteme zeigten eine starke Lumineszenz im sichtbaren Bereich bei Anregung mit UV-Licht. Die Metalloxid/Polymer-Hybridpartikel, die mit den phosphonat- oder phosphatfunktion¬alisierten Polystyrolpartikeln hergestellt wurden, zeigten keine signifikanten Unterschiede in ihren physikochemischen Eigenschaften. Im Allgemeinen lässt sich schlussfolgern, dass sowohl Phosphonat- als auch Phosphatgruppen gleichermaßen für die Oberflächenkristallisation von Metalloxiden geeignet sind. Die Zink¬oxid/Polymer-Hybridsysteme stellen eine Ausnahme dar. Die Verwendung der phosphonat¬funktionalisierten Polystyrolpartikel führte zur Entstehung einer Zinkhydroxidphase, die neben der Zinkoxidphase gebildet wurde. Aufgrund dessen zeigten die ZnO/RPO3H2-Hybridpartikel eine geringere Lumineszenz im sichtbaren Bereich als die ZnO/RPO4H2-Hybridsysteme.rnDie Erkenntnisse, die bei der Oberflächenkristallisation von Metalloxiden gewonnen wurden, konnten erfolgreich auf Cadmiumsulfid übertragen werden. Dabei konnte Cadmiumsulfid auf der Oberfläche von phosphonatfunktionalisierten Polystyrolpartikeln kristallisiert werden. Mit Hilfe des RPO3H2-Surfmers konnten phosphonatfunktion¬alisierte Polystyrolpartikel mit superparamagnetischem Kern synthetisiert werden, die zur Herstellung von multifunktionalen CdS/Polymer-Hybridpartikeln mit Magnetitkern verwendet wurden. Die Kristallphase und die Oberflächenbedeckung der multi¬funktionalen Hybridsysteme wurden mit den CdS/Polymer-Hybridsystemen ohne magnetischen Kern verglichen. Dabei konnte nachgewiesen werden, dass in beiden Fällen Cadmiumsulfid in der Greenockit-Modifikation gebildet wurde. Die multifunktionalen CdS/Polymer-Hybridpartikel mit superparamagnetischem Kern konnten sowohl mit einem optischen als auch einem magnetischen Stimulus angeregt werden.rnrn

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Die vorliegende Arbeit behandelt die Anwendung der Rasterkraftmikroskopie auf die Untersuchung mesostrukturierter Materialien. Mesostrukturierte Materialien setzen sich aus einzelnen mesoskopen Bausteinen zusammen. Diese Untereinheiten bestimmen im Wesentlichen ihr charakteristisches Verhalten auf äußere mechanische oder elektrische Reize, weshalb diesen Materialien eine besondere Rolle in der Natur sowie im täglichen Leben zukommt. Ein genaues Verständnis der Selbstorganisation dieser Materialien und der Wechselwirkung der einzelnen Bausteine untereinander ist daher von essentieller Bedeutung zur Entwicklung neuer Synthesestrategien sowie zur Optimierung ihrer Materialeigenschaften. Die Charakterisierung dieser mesostrukturierten Materialien erfolgt üblicherweise mittels makroskopischer Analysemethoden wie der dielektrischen Breitbandspektroskopie, Thermogravimetrie sowie in Biegungsexperimenten. In dieser Arbeit wird gezeigt, wie sich diese Analysemethoden mit der Rasterkraftmikroskopie verbinden lassen, um mesostrukturierte Materialien zu untersuchen. Die Rasterkraftmikroskopie bietet die Möglichkeit, die Oberfläche eines Materials abzubilden und zusätzlich dazu seine quantitativen Eigenschaften, wie die mechanische Biegefestigkeit oder die dielektrische Relaxation, zu bestimmen. Die Übertragung makroskopischer Analyseverfahren auf den Nano- bzw. Mikrometermaßstab mittels der Rasterkraftmikroskopie erlaubt die Charakterisierung von räumlich sehr begrenzten Proben bzw. von Proben, die nur in einer sehr kleinen Menge (<10 mg) vorliegen. Darüberhinaus umfasst das Auflösungsvermögen eines Rasterkraftmikroskops, welche durch die Größe seines Federbalkens (50 µm) sowie seines Spitzenradius (5 nm) definiert ist, genau den Längenskalenbereich, der einzelne Atome mit der makroskopischen Welt verbindet, nämlich die Mesoskala. In dieser Arbeit werden Polymerfilme, kolloidale Nanofasern sowie Biomineralien ausführlicher untersucht.rnIm ersten Projekt werden mittels Rasterkraftmikroskopie dielektrische Spektren von mischbaren Polymerfilmen aufgenommen und mit ihrer lokalen Oberflächenstruktur korreliert. Im zweiten Projekt wird die Rasterkraftmikroskopie eingesetzt, um Biegeexperimente an kolloidalen Nanofasern durchzuführen und so ihre Brucheigenschaften genauer zu untersuchen. Im letzten Projekt findet diese Methode Anwendung bei der Charakterisierung der Biegeeigenschaften von Biomineralien. Des Weiteren erfolgt eine Analyse der organischen Zusammensetzung dieser Biomineralien. Alle diese Projekte demonstrieren die vielseitige Einsetzbarkeit der Rasterkraftmikroskopie zur Charakterisierung mesostrukturierter Materialien. Die Korrelation ihrer mechanischen und dielektrischen Eigenschaften mit ihrer topographischen Beschaffenheit erlaubt ein tieferes Verständnis der mesoskopischen Materialien und ihres Verhaltens auf die Einwirkung äußerer Stimuli.rn