3 resultados para Theil’s uncertainty coefficient

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The beta-decay of free neutrons is a strongly over-determined process in the Standard Model (SM) of Particle Physics and is described by a multitude of observables. Some of those observables are sensitive to physics beyond the SM. For example, the correlation coefficients of the involved particles belong to them. The spectrometer aSPECT was designed to measure precisely the shape of the proton energy spectrum and to extract from it the electron anti-neutrino angular correlation coefficient "a". A first test period (2005/ 2006) showed the “proof-of-principles”. The limiting influence of uncontrollable background conditions in the spectrometer made it impossible to extract a reliable value for the coefficient "a" (publication: Baessler et al., 2008, Europhys. Journ. A, 38, p.17-26). A second measurement cycle (2007/ 2008) aimed to under-run the relative accuracy of previous experiments (Stratowa et al. (1978), Byrne et al. (2002)) da/a =5%. I performed the analysis of the data taken there which is the emphasis of this doctoral thesis. A central point are background studies. The systematic impact of background on a was reduced to da/a(syst.)=0.61 %. The statistical accuracy of the analyzed measurements is da/a(stat.)=1.4 %. Besides, saturation effects of the detector electronics were investigated which were initially observed. These turned out not to be correctable on a sufficient level. An applicable idea how to avoid the saturation effects will be discussed in the last chapter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In dieser Arbeit wird der Entwurf, der Aufbau, die Inbetriebnahme und die Charakterisierung einer neuartigen Penning-Falle im Rahmen des Experiments zur Bestimmung des g-Faktors des Protons präsentiert. Diese Falle zeichnet sich dadurch aus, dass die Magnetfeldlinien eines äußeren homogenen Magnetfeldes durch eine ferromagnetische Ringelektrode im Zentrum der Falle verzerrt werden. Der inhomogene Anteil des resultierenden Magnetfeldes, die sogenannte magnetische Flasche, lässt sich durch den Koeffizient B2 = 297(10) mT/mm2 des Terms zweiter Ordnung der Ortsabhängigkeit des Feldes quantifizieren. Eine solche ungewöhnlich starke Feldinhomogenität ist Grundvoraussetzung für den Nachweis der Spinausrichtung des Protons mittels des kontinuierlichen Stern-Gerlach-Effektes. Dieser Effekt basiert auf der im inhomogenen Magnetfeld entstehenden Kopplung des Spin-Freiheitsgrades des gefangenen Protons an eine seiner Eigenfrequenzen. Ein Spin-Übergang lässt sich so über einen Frequenzsprung detektieren. Dabei ist die nachzuweisende Änderung der Frequenz proportional zu B2 und zum im Fall des Protons extrem kleinen Verhältnis zwischen seinem magnetischen Moment nund seiner Masse. Die durch die benötigte hohe Inhomogenität des Magnetfeldes bedingten technischen Herausforderungen erfordern eine fundierte Kenntnis und Kontrolle der Eigenschaften der Penning-Falle sowie der experimentellen Bedingungen. Die in der vorliegenden Arbeit entwickelte Penning-Falle ermöglichte den erstmaligen zerstörungsfreien Nachweis von Spin-Quantensprüngen eines einzelnen gefangenen Protons, was einen Durchbruch für das Experiment zur direkten Bestimmung des g-Faktors mit der angestrebten relativen Genauigkeit von 10−9 darstellte. Mithilfe eines statistischen Verfahrens ließen sich die Larmor- und die Zyklotronfrequenz des Protons im inhomogenen Magnetfeld der Falle ermitteln. Daraus wurde der g-Faktor mit einer relativen Genauigkeit von 8,9 × 10−6 bestimmt. Die hier vorgestellten Messverfahren und der experimentelle Aufbau können auf ein äquivalentes Experiment zur Bestimmung des g-Faktors des Antiprotons zum Erreichen der gleichen Messgenauigkeit übertragen werden, womit der erste Schritt auf dem Weg zu einem neuen zwingenden Test der CPT-Symmetrie im baryonischen Sektor gemacht wäre.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wir betrachten Systeme von endlich vielen Partikeln, wobei die Partikel sich unabhängig voneinander gemäß eindimensionaler Diffusionen [dX_t = b(X_t),dt + sigma(X_t),dW_t] bewegen. Die Partikel sterben mit positionsabhängigen Raten und hinterlassen eine zufällige Anzahl an Nachkommen, die sich gemäß eines Übergangskerns im Raum verteilen. Zudem immigrieren neue Partikel mit einer konstanten Rate. Ein Prozess mit diesen Eigenschaften wird Verzweigungsprozess mit Immigration genannt. Beobachten wir einen solchen Prozess zu diskreten Zeitpunkten, so ist zunächst nicht offensichtlich, welche diskret beobachteten Punkte zu welchem Pfad gehören. Daher entwickeln wir einen Algorithmus, um den zugrundeliegenden Pfad zu rekonstruieren. Mit Hilfe dieses Algorithmus konstruieren wir einen nichtparametrischen Schätzer für den quadrierten Diffusionskoeffizienten $sigma^2(cdot),$ wobei die Konstruktion im Wesentlichen auf dem Auffüllen eines klassischen Regressionsschemas beruht. Wir beweisen Konsistenz und einen zentralen Grenzwertsatz.