5 resultados para The western Pacific

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis focusses on the tectonic evolution and geochronology of part of the Kaoko orogen, which is part of a network of Pan-African orogenic belts in NW Namibia. By combining geochemical, isotopic and structural analysis, the aim was to gain more information about how and when the Kaoko Belt formed. The first chapter gives a general overview of the studied area and the second one describes the basis of the Electron Probe Microanalysis dating method. The reworking of Palaeo- to Mesoproterozoic basement during the Pan-African orogeny as part of the assembly of West Gondwana is discussed in Chapter 3. In the study area, high-grade rocks occupy a large area, and the belt is marked by several large-scale structural discontinuities. The two major discontinuities, the Sesfontein Thrust (ST) and the Puros Shear Zone (PSZ), subdivide the orogen into three tectonic units: the Eastern Kaoko Zone (EKZ), the Central Kaoko Zone (CKZ) and the Western Kaoko Zone (WKZ). An important lineament, the Village Mylonite Zone (VMZ), has been identified in the WKZ. Since plutonic rocks play an important role in understanding the evolution of a mountain belt, zircons from granitoid gneisses were dated by conventional U-Pb, SHRIMP and Pb-Pb techniques to identify different age provinces. Four different age provinces were recognized within the Central and Western part of the belt, which occur in different structural positions. The VMZ seems to mark the limit between Pan-African granitic rocks east of the lineament and Palaeo- to Mesoproterozoic basement to the west. In Chapter 4 the tectonic processes are discussed that led to the Neoproterozoic architecture of the orogen. The data suggest that the Kaoko Belt experienced three main phases of deformation, D1-D3, during the Pan-African orogeny. Early structures in the central part of the study area indicate that the initial stage of collision was governed by underthrusting of the medium-grade Central Kaoko zone below the high-grade Western Kaoko zone, resulting in the development of an inverted metamorphic gradient. The early structures were overprinted by a second phase D2, which was associated with the development of the PSZ and extensive partial melting and intrusion of ~550 Ma granitic bodies in the high-grade WKZ. Transcurrent deformation continued during cooling of the entire belt, giving rise to the localized low-temperature VMZ that separates a segment of elevated Mesoproterozoic basement from the rest of the Western zone in which only Pan-African ages have so far been observed. The data suggest that the boundary between the Western and Central Kaoko zones represents a modified thrust zone, controlling the tectonic evolution of the Kaoko belt. The geodynamic evolution and the processes that generated this belt system are discussed in Chapter 5. Nd mean crustal residence ages of granitoid rocks permit subdivision of the belt into four provinces. Province I is characterised by mean crustal residence ages <1.7 Ga and is restricted to the Neoproterozoic granitoids. A wide range of initial Sr isotopic values (87Sr/86Sri = 0.7075 to 0.7225) suggests heterogeneous sources for these granitoids. The second province consists of Mesoproterozoic (1516-1448 Ma) and late Palaeo-proterozoic (1776-1701 Ma) rocks and is probably related to the Eburnian cycle with Nd model ages of 1.8-2.2 Ga. The eNd i values of these granitoids are around zero and suggest a predominantly juvenile source. Late Archaean and middle Palaeoproterozoic rocks with model ages of 2.5 to 2.8 Ga make up Province III in the central part of the belt and are distinct from two early Proterozoic samples taken near the PSZ which show even older TDM ages of ~3.3 Ga (Province IV). There is no clear geological evidence for the involvement of oceanic lithosphere in the formation of the Kaoko-Dom Feliciano orogen. Chapter 6 presents the results of isotopic analyses of garnet porphyroblasts from high-grade meta-igneous and metasedimentary rocks of the sillimanite-K-feldspar zone. Minimum P-T conditions for peak metamorphism were calculated at 731±10 °C at 6.7±1.2 kbar, substantially lower than those previously reported. A Sm-Nd garnet-whole rock errorchron obtained on a single meta-igneous rock yielded an unexpectedly old age of 692±13 Ma, which is interpreted as an inherited metamorphic age reflecting an early Pan-African granulite-facies event. The dated garnets survived a younger high-grade metamorphism that occurred between ca. 570 and 520 Ma and apparently maintained their old Sm-Nd isotopic systematics, implying that the closure temperature for garnet in this sample was higher than 730 °C. The metamorphic peak of the younger event was dated by electronmicroprobe on monazite at 567±5 Ma. From a regional viewpoint, it is possible that these granulites of igneous origin may be unrelated to the early Pan-African metamorphic evolution of the Kaoko Belt and may represent a previously unrecognised exotic terrane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is lively debated how eclogites find their way from deep to mid-crustal levels during exhumation. Different exhumation models for high-pressure and ultrahigh-pressure rocks were suggested in previous studies, based mainly on field observations and less on microstructural studies on the exhumed rocks. The development and improvement of electron microscopy techniques allows it, to focus interest on direct investigations of microstructures and crystallographic properties in eclogites. In this case, it is of importance to study the applicability of crystallographic measurements on eclogites for exhumation processes and to unravel which processes affect eclogite textures. Previous studies suggested a strong relationship between deformation and lattice preferred orientation (LPO) in omphacite but it is still unclear if the deformation is related to the exhumation of eclogites. This study is focused on the questions which processes affect omphacite LPO and if textural investigations of omphacite are applicable for studying eclogite exhumation. Therefore, eclogites from two examples in the Alps and in the Caledonides were collected systematically and investigated with respect to omphacite LPO by using the electron backscattered diffraction (EBSD) technique. Omphacite textures of the Tauern Window (Austria) and the Western Gneiss Region (Norway) were studied to compare lattice preferred orientation with field observations and suggested exhumation models from previous studies. The interpretation of omphacite textures, regarding the deformation regime is mainly based on numerical simulations in previous studies. Omphacite LPO patterns of the Eclogite Zone are clearly independent from any kind of exhumation process. The textures were generated during omphacite growth on the prograde path of eclogite development until metamorphic peak conditions. Field observations in the Eclogite Zone show that kinematics in garnet mica schist, surrounding the eclogites, strongly indicate an extrusion wedge geometry. Stretching lineations show top-N thrusting at the base and a top-S normal faulting with a sinistral shear component at the top of the Eclogite Zone. The different shear sense on both sides of the unit does not affect the omphacite textures in any way. The omphacite lattice preferred orientation patterns of the Western Gneiss Region can not be connected with any exhumation model. The textures were probably generated during the metamorphic peak and reflect the change from subduction to exhumation. Eclogite Zone and Western Gneiss Region differ significantly in size and especially in metamorphic conditions. While the Eclogite Zone is characterized by constant P-T conditions (600-650°C, 20-25 kbar), the Western Gneiss Region contains a wide P-T range from high- to ultrahigh pressure conditions (400-800°C, 20-35 kbar). In contrast to this, the omphacite textures of both units are very similar. This means that omphacite LPO is independent from P-T conditions and therefore from burial depth. Further, in both units, omphacite LPO is independent from grain and subgrain size as well as from any shape preferred orientation (SPO) on grain and subgrain scale. Overall, omphacite lattice preferred orientation are generated on the prograde part of omphacite development. Therefore, textural investigations on omphacite LPO are not applicable to study eclogite exhumation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bivalve mollusk shells are useful tools for multi-species and multi-proxy paleoenvironmental reconstructions with a high temporal and spatial resolution. Past environmental conditions can be reconstructed from shell growth and stable oxygen and carbon isotope ratios, which present an archive for temperature, freshwater fluxes and primary productivity. The purpose of this thesis is the reconstruction of Holocene climate and environmental variations in the North Pacific with a high spatial and temporal resolution using marine bivalve shells. This thesis focuses on several different Holocene time periods and multiple regions in the North Pacific, including: Japan, Alaska (AK), British Columbia (BC) and Washington State, which are affected by the monsoon, Pacific Decadal Oscillation (PDO) and El Niño/Southern Oscillation (ENSO). Such high-resolution proxy data from the marine realm of mid- and high-latitudes are still rare. Therefore, this study contributes to the optimization and verification of climate models. However, before using bivalves for environmental reconstructions and seasonality studies, life history traits must be well studied to temporally align and interpret the geochemical record. These calibration studies are essential to ascertain the usefulness of selected bivalve species as paleoclimate proxy archives. This work focuses on two bivalve species, the short-lived Saxidomus gigantea and the long-lived Panopea abrupta. Sclerochronology and oxygen isotope ratios of different shell layers of P. abrupta were studied in order to test the reliability of this species as a climate archive. The annual increments are clearly discernable in umbonal shell portions and the increments widths should be measured in these shell portions. A reliable reconstruction of paleotemperatures may only be achieved by exclusively sampling the outer shell layer of multiple contemporaneous specimens. Life history traits (e.g., timing of growth line formation, duration of the growing season and growth rates) and stable isotope ratios of recent S. gigantea from AK and BC were analyzed in detail. Furthermore, a growth-temperature model based on S. gigantea shells from Alaska was established, which provides a better understanding of the hydrological changes related to the Alaska Coastal Current (ACC). This approach allows the independent measurement of water temperature and salinity from variations in the width of lunar daily growth increments of S. gigantea. Temperature explains 70% of the variability in shell growth. The model was calibrated and tested with modern shells and then applied to archaeological specimens. The time period between 988 and 1447 cal yrs BP was characterized by colder (~1-2°C) and much drier (2-5 PSU) summers, and a likely much slower flowing ACC than at present. In contrast, the summers during the time interval of 599-1014 cal yrs BP were colder (up to 3°C) and fresher (1-2 PSU) than today. The Aleutian Low may have been stronger and the ACC was probably flowing faster during this time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study presents geo-scientific evidence for Holocene tsunami impact along the shores of the Eastern Ionian Sea. Cefalonia Island, the Gulf of Kyparissia and the Gialova Lagoon were subject of detailed geo-scientific investigations. It is well known that the coasts of the eastern Mediterranean were hit by the destructive influence of tsunamis in the past. The seismically highly active Hellenic Trench is considered as the most significant tsunami source in the Eastern Ionian Sea. This study focuses on the reconstruction and detection of sedimentary signatures of palaeotsunami events and their influence on the Holocene palaeogeographical evolution. The results of fine grained near coast geo-archives are discussed and interpreted in detail to differentiate between tsunami, storm and sea level highstands as sedimentation processes.rnA multi-method approach was applied using geomorphological, sedimentological, geochemical, geophysical and microfaunal analyses to detect Holocene tsunamigenic impact. Chronological data were based on radiocarbondatings and archaeological age estimations to reconstruct local geo-chronostratigraphies and to correlate them on supra-regional scales.rnDistinct sedimentary signatures of 5 generations of tsunami impact were found along the coasts of Cefalonia in the Livadi coastal plain. The results show that the overall coastal evolution was influenced by tsunamigenic impact that occured around 5700 cal BC (I), 4250 cal BC (II), at the beginning of the 2nd millennium cal BC (III), in the 1st millennium cal BC (IV) and posterior to 780 cal AD (V). Sea level reconstructions and the palaeogeographical evolution show that the local Holocene sea level has never been higher than at present.rnAt the former Mouria Lagoon along the Gulf of Kyparissia almost four allochtonous layers of tsunamigenic origin were identified. The stratigraphical record and palaeogeographical reconstructions show that major environmental coastal changes were linked to these extreme events. At the southern end of the Agoulenitsa Lagoon at modern Kato Samikon high-energy traces were found more than 2 km inland and upt ot 9 m above present sea level. The geo-chronological framework deciphered tsunami landfall for the 5th millennium cal BC (I), mid to late 2nd mill. BC (II), Roman times (1st cent. BC to early 4th cent. AD) (III) and most possible one of the historically well-known 365 AD or 521/551 AD tsunamis (IV).rnCoarse-grained allochthonous sediments of marine origin were found intersecting muddy deposits of the quisecent sediments of the Gialova Lagoon on the southwestern Peloponnese. Radiocarbondatings suggest 6 generations of major tsunami impact. Tsunami generations were dated to around 3300 cal BC (I), around the end of 4th and the beginning of 3rd millennium BC (II), after around 1100 cal BC (III), after the 4th to 2nd cent. BC (IV), between the 8th and early 15th cent. AD (V) and between the mid 14th to beginning of 15th cent. AD (VI). Palaeogeographical and morphological characteristics in the environs of the Gialova Lagoon were controlled by high-energy influence.rnSedimentary findings in all study areas are in good accordance to traces of tsunami events found all over the Ionian Sea. The correlation of geo-chronological data fits very well to coastal Akarnania, the western Peloponnese and finding along the coasts of southern Italy and the Aegean. Supra-regional influence of tsunamigenic impact significant for the investigated sites. The palaeogeographical evolution and palaeo-geomorphological setting of the each study area was strongly affected by tsunamigenic impact.rnThe selected geo-archives represent extraordinary sediment traps for the reconstruction of Holocene coastal evolution. Our result therefore give new insight to the exceptional high tsunami risk in the eastern Mediterranean and emphasize the underestimation of the overall tsunami hazard.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Der Fokus dieser Dissertation ist die populationsgenetische Analyse der neolithischen Bevölkerungswechsel in den 6.-5. Jahrtausende vor Christus, die im westlichen Karpatenbecken stattfanden. Die Zielsetzung der Studie war, mittels der Analyse von mitochondrialer und Y-chromosomaler aDNA, den Genpool der sechs neolithischen und kupferzeitlichen Populationen zu untersuchen und die daraus resultierenden Ergebnisse mit anderen prähistorischen und modernen genetischen Daten zu vergleichen.rnInsgesamt wurden 323 Individuen aus 32 ungarischen, kroatischen und slowakischen Fundplätzen beprobt und bearbeitet in den archäogenetischen Laboren der Johannes Gutenberg-Universität in Mainz. Die DNA Ergebnisse wurden mit verschiedenen populationsgenetischen Methoden ausgewertet. Vergleichsdaten von prähistorischen und modernen eurasiatischen Populationen wurden dazu gesammelt.rnDie HVS-I Region der mitochondrialen DNA konnten bei 256 Individuen reproduziert und authentifiziert werden (mit einer Erfolgsrate von 85.9%). Die Typisierung der HVS-II Region war in 80 Fällen erfolgreich. Testend alle gut erhaltene Proben, die Y-chromosomale Haplogruppe konnte in 33 männlichen Individuen typisiert werden.rnDie neolithischen, mitochondrialen Haplogruppen deuten auf eine hohe Variabilität des maternalen Genpools hin. Sowohl die mitochondrialen als auch die Y-chromosomalen Daten lassen Rückschlüsse auf eine nah-östliche bzw. südwestasiatische Herkunft der frühen Bauern zu. Die Starčevo- und linearbandkermaischen-Populationen in westlichem Karpatenbecken (letztere abgekürzt als LBKT) und die linearbandkermaischen-Population in Mitteleuropa (LBK) haben so starke genetische Ähnlichkeit, dass die Verbreitung der LBK nach Mitteleuropa mit vorangegangenen Wanderungsereignissen zu erklären ist. Die Transdanubische aDNA Daten zeigen hohe Affinität zu den publizierten prähistorischen aDNA Datensätzen von Mitteleuropa aus den 6.-4. Jahrtausende vor Chr. Die maternal-genetische Variabilität der Starčevo-Population konnte auch innerhalb der nachfolgenden Populationen Transdanubiens festgestellt werden. Nur kleinere Infiltrationen und Immigrationsereignissen konnten während der Vinča-, LBKT-, Sopot- und Balaton-Lasinja-Kultur in Transdanubien identifiziert werden. Zwischen den transdanubischen Regionen konnten mögliche genetische Unterschiede nur in der LBKT und in der Lengyel-Periode beobachtet werden, als sich die nördlichen Gruppen von den südlichen Populationen trennten. rnDie festgestellte Heterogenität der mtDNA in Zusammenhang mit der Y-chromosomalen Homogenität in den Starčevo- und LBK-Populationen, weisen auf patrilokale Residenzregeln und patrilineare Abstammungsregeln in den ersten Bauergemeinschaften hin. rnObwohl die hier präsentierten Daten einen großen Fortschritt in der Forschung von aDNA und Neolithikum des Karpatenbeckens und Mitteleuropas bedeuten, werfen sie auch mehrere Fragen auf, deren Beantwortung durch zukünftige Genomforschungen erbracht werden könnte.