2 resultados para The Body

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aims of the dissertation are to find the right description of the structure of perceptual experience and to explore the ways in which the structure of the body might serve to explain it. In the first two parts, I articulate and defend the claim that perceptual experience seems direct and the claim that its objects seem real. I defend these claims as integral parts of a coherent metaphysically neutral conception of perceptual experience. Sense-datum theorists, certain influential perceptual psychologists, and early modern philosophers (most notably Berkeley) all disputed the claim that perceptual experience seems direct. In Part I, I argue that the grounds on which they did so were poor. The aim is then, in Part II, to give a proper appreciation of the distinctive intentionality of perceptual experience whilst remaining metaphysically neutral. I do so by drawing on the early work of Edmund Husserl, providing a characterisation of the perceptual experience of objects as real, qua mind-independent particulars. In Part III, I explore two possible explanations of the structure characterising the intentionality of perceptual experience, both of which accord a distinctive explanatory role to the body. On one account, perceptual experience is structured by an implicit pre-reflective consciousness of oneself as a body engaged in perceptual activity. An alternative account makes no appeal to the metaphysically laden concept of a bodily self. It seeks to explain the structure of perceptual experience by appeal to anticipation of the structural constraints of the body. I develop this alternative by highlighting the conceptual and empirical basis for the idea that a first-order structural affordance relation holds between a bodily agent and certain properties of its body. I then close with a discussion of the shared background assumptions that ought to inform disputes over whether the body itself (in addition to its representation) ought to serve as an explanans in such an account.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The nervous system is the most complex organ in animals and the ordered interconnection of neurons is an essential prerequisite for normal behaviour. Neuronal connectivity requires controlled neuronal growth and differentiation. Neuronal growth essentially depends on the actin and microtubule cytoskeleton, and it has become increasingly clear, that crosslinking of these cytoskeletal fractions is a crucial regulatory process. The Drosophila Spectraplakin family member Short stop (Shot) is such a crosslinker and is crucial for several aspects of neuronal growth. Shot comprises various domains: An actin binding domain, a plakin-like domain, a rod domain, calcium responsive EF-hand motifs, a microtubule binding Gas2 domain, a GSR motif and a C-terminal EB1aff domain. Amongst other phenotypes, shot mutant animals exhibit severely reduced dendrites and neuromuscular junctions, the subcellular compartmentalisation of the transmembrane protein Fasciclin2 is affected, but it is also crucially required in other tissues, for example for the integrity of tendon cells, specialised epidermal cells which anchor muscles to the body wall. Despite these striking phenotypes, Shot function is little understood, and especially we do not understand how it can carry out functions as diverse as those described above. To bridge this gap, I capitalised on the genetic possibilities of the model system Drosophila melanogaster and carried out a structure-function analysis in different neurodevelopmental contexts and in tendon cells. To this end, I used targeted gene expression of existing and newly generated Shot deletion constructs in Drosophila embryos and larvae, analyses of different shot mutant alleles, and transfection of Shot constructs into S2 cells or cultured fibroblasts. My analyses reveal that a part of the Shot C-terminus is not essential in the nervous system but in tendon cells where it stabilises microtubules. The precise molecular mechanism underlying this activity is not yet elucidated but, based on the findings presented here, I have developed three alternative testable hypothesis. Thus, either binding of the microtubule plus-end tracking molecule EB1 through an EB1aff domain, microtubulebundling through a GSR rich motif or a combination of both may explain a context-specific requirement of the Shot C-terminus for tendon cell integrity. Furthermore, I find that the calcium binding EF-hand motif in Shot is exclusively required for a subset of neuronal functions of Shot but not in the epidermal tendon cells. These findings pave the way for complementary studies studying the impact of [Ca2+] on Shot function. Besides these differential requirements of Shot domains I find, that most Shot domains are required in the nervous system and tendon cells alike. Thus the microtubule Gas2 domain shows no context specific requirements and is equally essential in all analysed cellular contexts. Furthermore, I could demonstrate a partial requirement of the large spectrin-repeat rod domain of Shot in neuronal and epidermal contexts. I demonstrate that this domain is partially required in processes involving growth and/or tissue stability but dispensable for cellular processes where no mechanical stress resistance is required. In addition, I demonstrate that the CH1 domain a part of the N-terminal actin binding domain of Shot is only partially required for all analysed contexts. Thus, I conclude that Shot domains are functioning different in various cellular environments. In addition my study lays the base for future projects, such as the elucidation of Shot function in growth cones. Given the high degree of conservation between Shot and its mammalian orthologues MACF1/ACF7 and BPAG1, I believe that the findings presented in this study will contribute to the general understanding of spectraplakins across species borders.