2 resultados para TRANSMITTER
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Die Mitglieder der Neurotrophin-Familie (NGF, BDNF, NT-3 und NT-4) sind sekretierte Neuropeptide, die eine bedeutende Rolle bei der Entwicklung von Nervenzellen und bei der Modulation der synaptischen Transmission spielen. Wenngleich eine aktivitätsabhängige Sekretion von BDNF bereits gezeigt werden konnte, wurden die subzelluläre Expression und die Ausschüttung der anderen Neurotrophine bislang nur unzureichend charakterisiert. Um die Expression und die Ausschüttung aller Neurotrophine unter identischen Bedingungen untersuchen zu können, wurde in der vorliegenden Arbeit das Expressionsmuster und die synaptische Ausschüttung GFP-markierter Neurotrophine in dissoziierten hippokampalen Neuronen mit Hilfe der konfokalen Fluoreszenz-Videomikroskopie zeitaufgelöst untersucht. Zwei Phänotypen konnten unterschieden werden: der distale vesikuläre Expressionstyp mit Neurotrophin-beinhaltenden Vesikeln in distalen Neuriten, und der proximale Expressionstyp mit einer diffusen Neurotrophin-Verteilung in den Neuriten und Neurotrophin-beinhaltenden Vesikeln im Soma des Neurons und in den proximalen Dendriten. Der distale vesikuläre Phänotyp entsprach einer Verteilung des entsprechenden Neurotrophins in die sekretorischen Granula des aktivitätsabhängigen Sekretionsweges, während der proximale Phänotyp den Transport eines Neurotrophins in den konstitutiven Sekretionsweg widerspiegelte. Alle Neurotrophine erreichten in hippokampalen Neuronen prinzipiell beide Sekretionswege. Jedoch gelangten BDNF und NT-3 mit einer größeren Effizienz in den regulierten Sekretionsweg als NT-4 und NGF (BDNF: in 98% aller Zellen, NT-3: 85%, NT-4: 23% und NGF: 46%). Neurotrophine besitzen, wie es für sekretorische Peptide üblich ist, eine Vorläufersequenz, die während der Reifung des Proteins proteolytisch abgespalten wird. Die Fusion dieser Präpro-Sequenz von BDNF mit der Sequenz des maturen NT-4 bewirkte einen effizienteren Transport von NT-4 in die sekretorischen Granula des regulierten Sekretionsweges, und zeigte die große Bedeutung der Präpro-Sequenz für das zelluläre Verteilungsmuster von Neurotrophinen. In Neuronen, in denen die Neurotrophine in den regulierten Sekretionsweg transportiert wurden, konnte eine aktivitätsabhängige Sekretion der Neurotrophine an postsynaptische Strukturen glutamaterger Synapsen beobachtet werden. Die aktivitätsabhängige postsynaptische Ausschüttung der Neurotrophine zeigte eine Heterogenität in der Kinetik der Sekretion (exponentieller Abfall des Neurotrophin-Signals mit Zeitkonstanten von tau = 121 bis 307s). Die Präinkubtion mit dem Protonen-Ionophor Monensin, welcher die Neutralisation des intragranulären pH-Wertes und somit die Solubilisierung der dicht gepackten Proteinstrukturen in den Vesikeln erzwingt, erhöhte die Geschwindigkeit der Neurotrophin-Ausschüttung auf den Wert des unter physiologischen Bedingungen schnellsten Neurotrophins NT-4. Dennoch blieb die Geschwindigkeit der Neurotrophin-Ausschüttung im Vergleich zur Neurotransmitter-Ausschüttung langsam (tau = 13 ± 2 s). Diese Daten belegen eindeutig, dass die Neutralisation der sekretorischen Granula die Geschwindigkeit der Neurotrophin-Ausschüttung kritisch determiniert und die Geschwindigkeit der Neurotrophin-Ausschüttung im Vergleich zur konventionellen Neurotransmitter-Ausschüttung langsam erfolgt. Des Weiteren konnte gezeigt werden, dass das Neurotrophin BDNF effizient in distale vesikuläre Strukturen von CA1 Pyramidenzellen organotypischer Schnittkulturen des Hippokampus sortiert wird. Die basalen elektrischen Eigenschaften von CA1 Pyramidenzellen BDNF-defizienter Mäuse sind vergleichbar zu den Eigenschaften von Wildtyp Mäusen. Sowohl das Eigenpotential der CA1 Pyramidenzellen, die Form der Aktionspotentiale als auch die evozierten Antworten der CA1 Pyramdenzellen auf eine gepaarte präsynaptische Stimulation der Schaffer-Kollateralen zeigten bei BDNF-/- -, BDNF+/- - und BDNF+/+ -Mäusen keine signifikanten Unterschiede. Die Fähigkeit der CA1 Pyramidenzellen auf eine hochfrequente Reizung mit einer Langzeitpotenzierung (LTP) der postsynaptischen Ströme zu reagieren ist jedoch bei den BDNF-defizienten Mäusen beinträchtigt. Eine verminderte Induktion von LTP war in den BDNF-defizienten Mäusen nach tetanischer Stimulation der präsynaptischen Schaffer-Kollateralen und simultaner postsynaptischer Depolarisation der CA1 Pyramidenzelle zu beobachten.
Resumo:
In dieser Studie wurde anhand des Modells der Ratte das Gleichgewichtssystem auf cerebro-corticaler Ebene untersucht, und das Verhalten des Gehirns nach akuten sowie chronischen Ausfällen mit funktioneller Bildgebung untersucht. rnMit der Positronen-Emissions-Tomographie (PET) kann die Metabolismusrate bestimmter Gehirnareale gemessen werden. Narkotisierte Tiere wurden unter galvanischer vestibulärer Stimulation im PET gemessen und die Ergebnisse wurden mit Kontrollstimulations-Messungen verglichen. Es konnten verschiedene Areale, die eine erhöhte Stoffwechselaktivität aufwiesen, ermittelt werden. Dazu gehören der somatosensorische und der insuläre Cortex, Teile des auditorischen Cortexes, der anteriore cinguläre sowie der entorhinale Cortex. Subcorticale Strukturen wie der Hippocampus, die Amygdala sowie die latero-dorsalen thalamischen Kerne wiesen ebenfalls erhöhten Stoffwechsel unter vestibulärer Stimulation auf. rnBei dieser PET-Studie handelt es sich um die erste funktionell-bildgebende Studie, die Verarbeitung vestibulärer Informationen bei Ratten in vivo darstellt. Die anatomische Verbindung der gefundenen Areale wurde mit anterograden und retrograden neuronalen Tracings unterstützt. rnDarüber hinaus wurde markiertes Gewebe, welches die Verbindung zwischen thalamischen und cerebro-corticalen Kernen der vestibulären Verschaltung aufweist, immunhistochemisch auf dessen Neurotransmission hin untersucht. Das katecholaminergen und dem opioidergen System wurde untersucht. Eine Beteiligung katecholaminerger Transmitter konnte nicht nachgewiesen werden. Neurone im somatosensorischen Cortex, die positiv auf einen Opioid-Rezeptor-Antikörper getestet wurden erhalten anterograd markierte Terminale aus dem thalamischen Kern LDDM, der mittels der PET als vestibulär identifiziert werden konnte. rnBasierend auf den Ergebnissen der ersten bildgebenden Studie wurde in einer zweiten funktionell-bildgebenden Studie die zentral-vestibuläre Verschaltung unterbrochen, indem relevante thalamische Kerngebiete (LDDM, LDVL) elektrolytisch zerstört wurden. Die Stoffwechselaktivität wurde anschließend bei diesen Tieren an verschiedenen Zeitpunkten nach der Läsion im PET unter vestibulärer Stimulation gemessen. Die Stoffwechselaktivität dieser Tiere wurde mit der Stoffwechselaktivität von Kontroll-Tieren verglichen. rnBei dieser Studie wurde zum ersten Mal, mittels funktioneller Bildgebung gezeigt, welche Bereiche des Gehirns nach akuter und chronischer Läsion des vestibulären Systems an Kompensationsmechanismen beteiligt sind. Alle Gehirnareale, die in verschiedenen Zeitfenstern (1, 3, 7 und 20 Tage nach Läsion) erhöhten Metabolismus aufweisen, sind Teil der vestibulären Verschaltung. Es handelt sich dabei um Areale der Okulomotorik und des räumlichen Gedächtnisses: das Postsubiculum, den Colliculus superior, das mediale Corpus geniculatum, den entorhinalen Cortex sowie die Zona incerta.rn