2 resultados para Systolic Dysfunction
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Chemotherapy is a mainstay of cancer treatment. Due to increased drug resistance and the severe side effects of currently used therapeutics, new candidate compounds are required for improvement of therapy success. Shikonin, a natural naphthoquinone, was used in traditional Chinese medicine for the treatment of different inflammatory diseases and recent studies revealed the anticancer activities of shikonin. We found that shikonin has strong cytotoxic effects on 15 cancer cell lines, including multidrug-resistant cell lines. Transcriptome-wide mRNA expression studies showed that shikonin induced genetic pathways regulating cell cycle, mitochondrial function, levels of reactive oxygen species, and cytoskeletal formation. Taking advantage of the inherent fluorescence of shikonin, we analyzed its uptake and distribution in live cells with high spatial and temporal resolution using flow cytometry and confocal microscopy. Shikonin was specifically accumulated in the mitochondria, and this accumulation was associated with a shikonin-dependent deregulation of cellular Ca(2+) and ROS levels. This deregulation led to a breakdown of the mitochondrial membrane potential, dysfunction of microtubules, cell-cycle arrest, and ultimately induction of apoptosis. Seeing as both the metabolism and the structure of mitochondria show marked differences between cancer cells and normal cells, shikonin is a promising candidate for the next generation of chemotherapy.
Resumo:
Im Rahmen dieser Arbeit wurde die Rolle von myelomonozytären Zellen, IFN-gamma (Interferon gamma), MyD88 (myeloid differentiation factor 88) und zugrundeliegenden Signalwege in der Angiotensin II (ATII)-induzierten vaskulären Inflammation, Dysfunktion und arteriellen Hypertonie untersucht. Wie bereits veröffentlichte Vordaten aus meiner Arbeitsgruppe zeigten, schützt die Depletion von Lysozym M (LysM)+ myelomonozytären Zellen (Diphteriatoxin-vermittelt in Mäusen, die transgen für den humanen Diphtheriatoxin-Rezeptor sind, LysMiDTR Mäuse) vor der ATII-induzierten vaskulären Dysfunktion und arterieller Hypertonie, und kann durch adoptiven Zelltransfer von Wildtyp Monozyten wiederhergestellt werden. In meiner Arbeit konnte ich zeigen, dass die Rekonstitution von Monozyten-depletierten LysMiDTR Mäusen mit Wildtyp Monozyten den Phänotyp der vaskulären Dysfunktion wiederherstellen kann, die Rekonstitution mit gp91phox-/y oder Agtr1-/- Monozyten jedoch nicht. Die Hypertonus-mediierenden Effekte dieser infiltrierenden Monozyten scheinen demnach von der intakten ATII und NADPH Oxidase Signalübertragung in diesen Zellen abhängig zu sein. Vermutlich ebenfalls für die Aktivierung der Monozyten funktionell wichtig sind IFN-gamma, produziert durch NK-Zellen, und der Transkriptionsfaktor T-bet (T-box expressed in T cells), exprimiert von NK-Zellen und Monozyten. IFN-gamma-/- Mäuse waren partiell geschützt vor der ATII-induzierten vaskulären Dysfunktion und charakterisiert durch reduzierte Level an Superoxid im Gefäß im Vergleich zu ATII-infundierten Wildtyp Mäusen. IFN-gamma-/- und T-bet defiziente Tbx21-/- Mäuse zeichneten sich ferner durch eine reduzierte ATII-mediierte Rekrutierung von NK1.1+ NK-Zellen, als ein Hautproduzent von IFN-gamma, sowie CD11b+GR-1low Interleukin-12 (IL-12) kompetenten Monozyten aus. Durch Depletions- und adoptive Transferexperimente konnte ich in dieser Arbeit NK-Zellen als essentielle Mitstreiter in der vaskulären Dysfunktion identifizieren und stellte fest, dass T-bet+LysM+ myelomonozytäre Zellen für die NK-Zellrekrutierung in die Gefäßwand und lokale IFN-gamma Produktion benötigt werden. Damit wurde erstmals NK-Zellen eine essentielle Rolle in der ATII-induzierten vaskulären Dysfunktion zugeschrieben. Außerdem wurde der T-bet-IFN-gamma Signalweg und die gegenseitige Monozyten-NK-Zellaktivierung als ein potentielles therapeutisches Ziel in kardiovaskulären Erkrankungen aufgedeckt. Des Weiteren identifizierte ich in meiner Arbeit MyD88 als ein zentrales Signalmolekül in der ATII-getriebenen Inflammation und vaskulären Gefäßschädigung. MyD88 Defizienz reduzierte den ATII-induzierten Anstieg des systolischen Blutdrucks und die endotheliale und glattmuskuläre vaskuläre Dysfunktion. Zusätzlich waren die vaskuläre Superoxid-Bildung sowie die Expressionslevel der NADPH Oxidase, der wichtigsten Quelle für oxidativem Stress im Gefäß, in ATII-infundierten MyD88-/- Mäusen im Vergleich zum Wildtyp reduziert. Mit Hilfe von durchflusszytometrischen Analysen deckte ich zudem auf, dass die ATII-induzierte Einwanderung von CD45+ Leukozyten, insbesondere CD11b+Ly6G-Ly6Chigh inflammatorischen Monozyten in MyD88-/- Mäusen signifikant abgeschwächt war. Diese Resultate wurden durch immunhistochemische Untersuchung von Aortengewebe auf CD68+, F4/80+ und Nox2+ Makrophagen/Phagozyten sowie Expressionsanalysen von Inflammationsmarkern untermauert. Analysen der mRNA Expression in Aortengewebe zeigten ferner eine in Wildtyp Mäusen nach ATII Infusion tendenziell gesteigerte Expression von inflammatorischen Monozytenmakern sowie eine abnehmende Expression von reparativen Monozytenmarken, während dieser Shift zu einem proinflammatorsichen Phänotyp in MyD88-/- blockiert zu sein schien. Dies zeigt eine Rolle von MyD88 in der terminalen Differenzierung von myelomonozytären Zellen an. Um dies weitergehend zu untersuchen und aufzudecken, ob die MyD88 Effekte abhängig sind von Zellen der hämatopoetischen Linie oder Gewebszellen, wurden Knochenmarktransferexperimente durchgeführt. MyD88 Defizienz in Knochenmark-abstammende Zellen reduzierte die ATII-induzierte vaskuläre Dysfunktion und Infiltration der Gefäßwand mit CD45+ Leukozyten und inflammatorischen myelomonozytären Zellen. Die protektiven Effekte der MyD88 Defizienz in der Angiotensin II-induzierten Inflammation konnten nicht auf Signalwege über die Toll-like Rezeptoren TLR2, -7 oder -9 zurückgeführt werden, wie die Untersuchung der vaskulären Reaktivität entsprechender Knockout Mäuse zeigte. Zusammenfassend konnte ich in meiner Arbeit zeigen, dass die Infiltration der Gefäßwand mit Nox2+AT1R+T-bet+MyD88+ myelomonozytären Zellen und die Wechselwirkung und gegenseitige Aktivierung dieser Zellen mit IFN-gamma produzierenden NK-Zellen eine zentrale Bedeutung in der Pathogenese der Angiotensin II (ATII)-induzierten vaskulären Dysfunktion, Inflammation und arteriellen Hypertonie einnehmen.