13 resultados para Surface Properties
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Der Einfluß von Druck auf die Eigenschaften dünner dielektrischer Filme wurde mit Hilfe von Oberflächenplasmonen-Spektroskopie untersucht. Die Arbeit kann aus der Perspektive der Materialcharakterisierung und aus apparativer Sicht betrachtet werden, da z.B. eine neue Hochdruckzelle konstruiert wurde, die kombinierte Oberflächenplasmonen-Elektrochemie Messungen erlaubt. SiO2-Solgel Filme wurden optimiert und auf ihre Widerstandsfähigkeit in Bufferlösungen und ihre Oberflächeneigenschaften hin untersucht. Eine Anwendung lag in der Charakterisierung von thermoresponsiven Acrylsäureisopropylamid Hydrogelen, die einen Volumenphasenübergang aufwiesen, dessen Eigenschaften durch Druck und die Beschränktheit des Films auf die Oberfläche beeinflußt wurden.Die Charakterisierung von DNA Hybridisierungsreaktionen an Oberflächen wurde mit einer Fluoreszenz-erweiterten Hochdruckapparatur durchgeführt. Zunächst wurde die Stabilität der zugrundeliegenden Bindematrix sichergestellt. Bei DNA Einzelsträngen führten Temperatur und Druck zu jeweils verringertem bzw. erhöhtem Signal. Entropie und Änderungen der Lösungsmitteleigenschaften wurden für die Signaländerungen verantwortlich gemacht. Die Eigenschaften der Doppelhelix wurden im Langmuir-Bild beschrieben. Der Brechungsindex von Kohlendioxid wurde bis zu 200 MPa gemessen und mit vorhandenen Gleichungen verglichen. Weiterhin wurde das Schwellverhalten von PMMA in scCO2/MMA-Mischungen untersucht. Mit Druck und MMA-Konzentration nimmt das Polymer vermehrt Kohlendioxid auf. Dadurch schwillt es an und sein Brechungsindex nimmt ab. Berechnungen unter Annahme einer idealen Mixtur ergaben gute qualitative Übereinstimmung mit den Meßwerten.Abschließend wurde eine neue Elektrochemie-Hochdruckzelle vorgestellt, die an Kaliumhexacyanoferrat(III)-(II) getestet wurde. Die Elektropolymerisation von Thiophen optisch untersucht.
Resumo:
In this thesis, we investigated the evaporation of sessile microdroplets on different solid substrates. Three major aspects were studied: the influence of surface hydrophilicity and heterogeneity on the evaporation dynamics for an insoluble solid substrate, the influence of external process parameters and intrinsic material properties on microstructuring of soluble polymer substrates and the influence of an increased area to volume ratio in a microfluidic capillary, when evaporation is hindered. In the first part, the evaporation dynamics of pure sessile water drops on smooth self-assembled monolayers (SAMs) of thiols or disulfides on gold on mica was studied. With increasing surface hydrophilicity the drop stayed pinned longer. Thus, the total evaporation time of a given initial drop volume was shorter, since the drop surface, through which the evaporation occurs, stays longer large. Usually, for a single drop the volume decreased linearly with t1.5, t being the evaporation time, for a diffusion-controlled evaporation process. However, when we measured the total evaporation time, ttot, for multiple droplets with different initial volumes, V0, we found a scaling of the form V0 = attotb. The more hydrophilic the substrate was, the more showed the scaling exponent a tendency to an increased value up to 1.6. This can be attributed to an increasing evaporation rate through a thin water layer in the vicinity of the drop. Under the assumption of a constant temperature at the substrate surface a cooling of the droplet and thus a decreased evaporation rate could be excluded as a reason for the different scaling exponent by simulations performed by F. Schönfeld at the IMM, Mainz. In contrast, for a hairy surface, made of dialkyldisulfide SAMs with different chain lengths and a 1:1 mixture of hydrophilic and hydrophobic end groups (hydroxy versus methyl group), the scaling exponent was found to be ~ 1.4. It increased to ~ 1.5 with increasing hydrophilicity. A reason for this observation can only be speculated: in the case of longer hydrophobic alkyl chains the formation of an air layer between substrate and surface might be favorable. Thus, the heat transport to the substrate might be reduced, leading to a stronger cooling and thus decreased evaporation rate. In the second part, the microstructuring of polystyrene surfaces by drops of toluene, a good solvent, was investigated. For this a novel deposition technique was developed, with which the drop can be deposited with a syringe. The polymer substrate is lying on a motorized table, which picks up the pendant drop by an upward motion until a liquid bridge is formed. A consecutive downward motion of the table after a variable delay, i.e. the contact time between drop and polymer, leads to the deposition of the droplet, which can evaporate. The resulting microstructure is investigated in dependence of the processes parameters, i.e. the approach and the retraction speed of the substrate and the delay between them, and in dependence of the intrinsic material properties, i.e. the molar mass and the type of the polymer/solvent system. The principal equivalence with the microstructuring by the ink-jet technique was demonstrated. For a high approach and retraction speed of 9 mm/s and no delay between them, a concave microtopology was observed. In agreement with the literature, this can be explained by a flow of solvent and the dissolved polymer to the rim of the pinned droplet, where polymer is accumulated. This effect is analogue to the well-known formation of ring-like stains after the evaporation of coffee drops (coffee-stain effect). With decreasing retraction speed down to 10 µm/s the resulting surface topology changes from concave to convex. This can be explained with the increasing dissolution of polymer into the solvent drop prior to the evaporation. If the polymer concentration is high enough, gelation occurs instead of a flow to the rim and the shape of the convex droplet is received. With increasing delay time from below 0 ms to 1s the depth of the concave microwells decreases from 4.6 µm to 3.2 µm. However, a convex surface topology could not be obtained, since for longer delay times the polymer sticks to the tip of the syringe. Thus, by changing the delay time a fine-tuning of the concave structure is accomplished, while by changing the retraction speed a principal change of the microtopolgy can be achieved. We attribute this to an additional flow inside the liquid bridge, which enhanced polymer dissolution. Even if the pendant drop is evaporating about 30 µm above the polymer surface without any contact (non-contact mode), concave structures were observed. Rim heights as high as 33 µm could be generated for exposure times of 20 min. The concave structure exclusively lay above the flat polymer surface outside the structure even after drying. This shows that toluene is taken up permanently. The increasing rim height, rh, with increasing exposure time to the solvent vapor obeys a diffusion law of rh = rh0 tn, with n in the range of 0.46 ~ 0.65. This hints at a non-Fickian swelling process. A detailed analysis showed that the rim height of the concave structure is modulated, unlike for the drop deposition. This is due to the local stress relaxation, which was initiated by the increasing toluene concentration in the extruded polymer surface. By altering the intrinsic material parameters i.e. the polymer molar mass and the polymer/solvent combination, several types of microstructures could be formed. With increasing molar mass from 20.9 kDa to 1.44 MDa the resulting microstructure changed from convex, to a structure with a dimple in the center, to concave, to finally an irregular structure. This observation can be explained if one assumes that the microstructuring is dominated by two opposing effects, a decreasing solubility with increasing polymer molar mass, but an increasing surface tension gradient leading to instabilities of Marangoni-type. Thus, a polymer with a low molar mass close or below the entanglement limit is subject to a high dissolution rate, which leads to fast gelation compared to the evaporation rate. This way a coffee-rim like effect is eliminated early and a convex structure results. For high molar masses the low dissolution rate and the low polymer diffusion might lead to increased surface tension gradients and a typical local pile-up of polymer is found. For intermediate polymer masses around 200 kDa, the dissolution and evaporation rate are comparable and the typical concave microtopology is found. This interpretation was supported by a quantitative estimation of the diffusion coefficient and the evaporation rate. For a different polymer/solvent system, polyethylmethacrylate (PEMA)/ethylacetate (EA), exclusively concave structures were found. Following the statements above this can be interpreted with a lower dissolution rate. At low molar masses the concentration of PEMA in EA most likely never reaches the gelation point. Thus, a concave instead of a convex structure occurs. At the end of this section, the optically properties of such microstructures for a potential application as microlenses are studied with laser scanning confocal microscopy. In the third part, the droplet was confined into a glass microcapillary to avoid evaporation. Since here, due to an increased area to volume ratio, the surface properties of the liquid and the solid walls became important, the influence of the surface hydrophilicity of the wall on the interfacial tension between two immiscible liquid slugs was investigated. For this a novel method for measuring the interfacial tension between the two liquids within the capillary was developed. This technique was demonstrated by measuring the interfacial tensions between slugs of pure water and standard solvents. For toluene, n-hexane and chloroform 36.2, 50.9 and 34.2 mN/m were measured at 20°C, which is in a good agreement with data from the literature. For a slug of hexane in contact with a slug of pure water containing ethanol in a concentration range between 0 and 70 (v/v %), a difference of up to 6 mN/m was found, when compared to commercial ring tensiometry. This discrepancy is still under debate.
Resumo:
In this work, metal nanoparticles produced by nanosphere lithography were studied in terms of their optical properties (in connection to their plasmon resonances), their potential application in sensing platforms - for thin layer sensing and bio-recognition events -, and for a particular case (the nanocrescents), for enhanced spectroscopy studies. The general preparation procedures introduced early in 2005 by Shumaker-Parry et al. to produce metallic nanocrescents were extended to give rise to more complex (isolated) structures, and also, by combining colloidal monolayer fabrication and plasma etching techniques, to arrays of them. The fabrication methods presented in this work were extended not only to new shapes or arrangements of particles, but included also a targeted surface tailoring of the substrates and the structures, using different thiol and silane compounds as linkers for further attachment of, i.e. polyelectrolyte layers, which allow for a controlled tailoring of their nanoenvironment. The optical properties of the nanocrescents were studied with conventional transmission spectroscopy; a simple multipole model was adapted to explain their behaviour qualitatively. In terms of applications, the results on thin film sensing using these particles show that the crescents present an interesting mode-dependent sensitivity and spatial extension. Parallel to this, the penetrations depths were modeled with two simplified schemes, obtaining good agreement with theory. The multiple modes of the particles with their characteristic decay lengths and sensitivities represent a major improvement for particle-sensing platforms compared to previous single resonance systems. The nanocrescents were also used to alter the emission properties of fluorophores placed close to them. In this work, green emitting dyes were placed at controlled distances from the structures and excited using a pulsed laser emitting in the near infrared. The fluorescence signal obtained in this manner should be connected to a two-photon processes triggered by these structures; obtaining first insight into plasmon-mediated enhancement phenomena. An even simpler and faster approach to produce plasmonic structures than that for the crescents was tested. Metallic nanodiscs and nanoellipses were produced by means of nanosphere lithography, extending a procedure reported in the literature to new shapes and optical properties. The optical properties of these particles were characterized by extinction spectroscopy and compared to results from the literature. Their major advantage is that they present a polarization-dependent response, like the nanocrescents, but are much simpler to fabricate, and the resonances can be tailored in the visible with relative ease. The sensing capabilities of the metallic nanodiscs were explored in the same manner as for the nanocrescents, meaning their response to thin layers and to bio-recognition events on their surface. The sensitivity of these nanostructures to thin films proved to be lower than that of the crescents, though in the same order of magnitude. Experimental information about the near field extension for the Au nanodiscs of different sizes was also extracted from these measurements. Further resonance-tailoring approaches based on electrochemical deposition of metals on the nanodiscs were explored, as a means of modifying plasmon resonances by changing surface properties of the nanoparticles. First results on these experiments would indicate that the deposition of Ag on Au on a submonolayer coverage level can lead to important blue-shifts in the resonances, which would open a simple way to tailor resonances by changing material properties in a local manner.
Resumo:
Es wurden funktionalisierte polymerunterstützte planare Phospholipid-Modellmembran-Systeme hergestellt und auf jeder Präparationsstufe eingehend charakterisiert. Dünne Polysaccharidfilme wurden in der Form von quellbaren Gelen auf oxidische Oberflächen aufgebracht und bezüglich ihres Quellungsverhaltens und der Oberflächeneigenschaften in Abhängigkeit vom Wassergehalt untersucht. Lipidmonoschichten unterschiedlicher Zusammensetzung wurden mittels Langmuir-Blodgett-Tranfer auf Polymersubstrate übertragen und bezüglich der Stärke der Lipid/Polymer Wechselwirkung, der lateralen Selbstdiffusion in Abhängigkeit von der Wasseraktivität, dem Spreitverhalten der monomolekularen Membran auf dem Substrat in Abhängigkeit von der Wasseraktivität und dem Lateraldruck der Monoschicht, sowie des Ausmaßes der Hydratation im Kopfgruppenbereich der Lipidmembran in Abhängigkeit von der Wasseraktivität mittels Fluoreszensondenmethoden (Fluoreszenzerholung nach Photobleichung (FRAP), Fluoreszenzmikroskopie und Fluoreszenzspektroskopie) untersucht. Diffusions- und Spreitverhalten von amphiphilen Monoschichten auf Polymersubstraten wurden auf der Basis von in dieser Arbeit entwickelten physikalischen Modellen diskutiert. Mittels Langmuir-Schäfer Transfer wurde auf polymerunterstützte Lipidmonoschichten eine zweite Monoschicht übertragen. Die somit erhaltenen Lipid-Doppelschichtmembranen wurden bezüglich ihrer Stabilität, der lateralen Struktur, der lateralen Selbstdiffusion, des Spreitverhaltens auf unbedeckte Bereiche sowie der Stärke der Membran/Substrat Wechselwirkung vermittels Fluoreszenzmikroskopie, FRAP und Interferenz-Kontrast-Mikroskopie (RICM) untersucht. Schließlich wurden substratgestützte Doppelschicht-Lipidmembranen mit als Protonenpumpen fungierenden integralen Membranproteinen versehen. Die laterale Selbstdiffusion der rekonstituierten Proteinmoleküle wurde mittels FRAP, die funktionale Aktivität der Protonenpumpen mit einem Ionen-sensitiven Feldeffekttransistor-Array analysiert.
Resumo:
Die grundlegenden Prinzipien und Möglichkeiten der Oberflächencharakterisierung mittels ToF-SIMS (Flugzeit-Sekundärionen Massenspektrometrie) werden an ausgewählten Beispielen aus einem aktuell laufenden und vom BMBF geförderten Verbundforschungsprojekt (Fkz: 03N8022A) zum Thema Nanofunktionalisierung von Grenzflächen vorgestellt. Ein Schwerpunkt innerhalb des Projekts stellen die nichtgeschlossenen Schichtsysteme dar, die entweder über Domänenstrukturen oder einer definierten Einzelfunktionalisierung neuartige funktionelle Oberflächen bereitstellen. Mithilfe der sehr oberflächensensitiven ToF-SIMS Methode sowie der Möglichkeit einer graphischen Darstellung lateraler Molekülionenverteilungen auf funktionalisierten Oberflächen können Informationen über Struktur und Belegungsdichte der Funktionsschicht gewonnen werden. Die Kombination des ToF-SIMS Experimentes und eines multivariaten Algorithmus (partial least squares, PLS) liefert eine interessante Möglichkeit zur quantitativen und simultanen Bestimmung von Oberflächeneigenschaften (Element- und molekulare Konzentrationen sowie Kontaktwinkelwerte). Da das ToF-SIMS Spektrum einer plasmafunktionalisierten Oberfläche im Allgemeinen eine Vielzahl unterschiedlicher Fragmentsignale enthält, lässt eine einfache eindimensionale Korrelation (z.B. CF3 - Fragmentintensität ßà CF3-Konzentration) den größten Teil der im Spektrum prinzipiell enthaltenen Information unberücksichtigt. Aufgrund der großen Anzahl von atomaren und molekularen Signalen, die repräsentativ für die chemische Struktur der analysierten Oberflächen sind, ist es sinnvoll, diese Fülle von Informationen zur Quantifizierung der Oberflächeneigenschaften (Elementkonzentrationen, Kontaktwinkel etc.) zu verwenden. Zusätzlich ermöglicht diese Methode eine quantitative Bestimmung der Oberflächeneigenschaften auf nur µm-großen Bereichen. Das ist vorteilhaft für Untersuchungen chemisch strukturierter Oberflächen, da die Größe der Strukturierung für viele Anwendungen in einem Bereich von mehreren µm liegt. Anhand eines Beispieles aus dem biologisch-medizinischen Fachgebiet, soll der erfolgreiche Einsatz multivariater Modelle aufgezeigt werden. In diesem Experiment wurden menschlichen Bindegewebs- (Fibroblasten) und Pankreaszellen auf plasmafunktionalisiserten Oberflächen kultiviert, um die Beeinflussung der Funktionalisierung auf das Zellwachstum zu untersuchen. Die plasmabehandelten Oberflächen wurden durch die Verwendung von TEM-Gittern mit µm-großen Öffnungen chemisch strukturiert und das Wachstumsverhalten der Zellen beobachtet. Jedem dieser µm-großen Bereiche können mithilfe der multivariaten Modelle quantitative Größen zugeordnet werden (Konzentrationen und Kontaktwinkelwerte), die zur Interpretation des Wachstumsverhaltens der Zellen beitragen.
Resumo:
Membranen spielen eine essentielle Rolle bei vielen wichtigen zellulären Prozessen. Sie ermöglichen die Erzeugung von chemischen Gradienten zwischen dem Zellinneren und der Umgebung. Die Zellmembran übernimmt wesentliche Aufgaben bei der intra- und extrazellulären Signalweiterleitung und der Adhäsion an Oberflächen. Durch Prozesse wie Endozytose und Exozytose werden Stoffe in oder aus der Zelle transportiert, eingehüllt in Vesikel, welche aus der Zellmembran geformt werden. Zusätzlich bietet sie auch Schutz für das Zellinnere. Der Hauptbestandteil einer Zellmembran ist die Lipiddoppelschicht, eine zweidimensionale fluide Matrix mit einer heterogenen Zusammensetzung aus unterschiedlichen Lipiden. In dieser Matrix befinden sich weitere Bausteine, wie z.B. Proteine. An der Innenseite der Zelle ist die Membran über Ankerproteine an das Zytoskelett gekoppelt. Dieses Polymernetzwerk erhöht unter anderem die Stabilität, beeinflusst die Form der Zelle und übernimmt Funktionenrnbei der Zellbewegung. Zellmembranen sind keine homogenen Strukturen, je nach Funktion sind unterschiedliche Lipide und Proteine in mikrsokopischen Domänen angereichert.Um die grundlegenden mechanischen Eigenschaften der Zellmembran zu verstehen wurde im Rahmen dieser Arbeit das Modellsystem der porenüberspannenden Membranen verwendet.Die Entwicklung der porenüberspannenden Membranen ermöglicht die Untersuchung von mechanischen Eigenschaften von Membranen im mikro- bis nanoskopischen Bereich mit rasterkraftmikroskopischen Methoden. Hierbei bestimmen Porosität und Porengröße des Substrates die räumliche Auflösung, mit welcher die mechanischen Parameter untersucht werdenrnkönnen. Porenüberspannende Lipiddoppelschichten und Zellmembranen auf neuartigen porösen Siliziumsubstraten mit Porenradien von 225 nm bis 600 nm und Porositäten bis zu 30% wurden untersucht. Es wird ein Weg zu einer umfassenden theoretischen Modellierung der lokalen Indentationsexperimente und der Bestimmung der dominierenden energetischen Beiträge in der Mechanik von porenüberspannenden Membranen aufgezeigt. Porenüberspannende Membranen zeigen eine linear ansteigende Kraft mit zunehmender Indentationstiefe. Durch Untersuchung verschiedener Oberflächen, Porengrößen und Membranen unterschiedlicher Zusammensetzung war es für freistehende Lipiddoppelschichten möglich, den Einfluss der Oberflächeneigenschaften und Geometrie des Substrates, sowie der Membranphase und des Lösungsmittels auf die mechanischen Eigenschaften zu bestimmen. Es ist möglich, die experimentellen Daten mit einem theoretischen Modell zu beschreiben. Hierbei werden Parameter wie die laterale Spannung und das Biegemodul der Membran bestimmt. In Abhängigkeit der Substrateigenschaften wurden für freitragende Lipiddoppelschichten laterale Spannungen von 150 μN/m bis zu 31 mN/m gefunden für Biegemodulde zwischen 10^(−19) J bis 10^(−18) J. Durch Kraft-Indentations-Experimente an porenüberspannenden Zellmembranen wurde ein Vergleich zwischen dem Modell der freistehenden Lipiddoppelschichten und nativen Membranen herbeigeführt. Die lateralen Spannungen für native freitragende Membranen wurden zu 50 μN/m bestimmt. Weiterhin konnte der Einfluss des Zytoskeletts und der extrazellulä-rnren Matrix auf die mechanischen Eigenschaften bestimmt und innerhalb eines basolateralen Zellmembranfragments kartiert werden, wobei die Periodizität und der Porendurchmesser des Substrates das räumliche Auflösungsvermögen bestimmen. Durch Fixierung der freistehenden Zellmembran wurde das Biegemodul der Membran um bis zu einem Faktor 10 erhöht. Diese Arbeit zeigt wie lokal aufgelöste, mechanische Eigenschaften mittels des Modellsystems der porenüberspannenden Membranen gemessen und quantifiziert werden können. Weiterhin werden die dominierenden energetischen Einflüsse diskutiert, und eine Vergleichbarkeit zurnnatürlichen Membranen hergestellt.rn
Resumo:
In the field of organic optoelectronics, the nanoscale structure of the materials has huge im-pact on the device performance. Here, scanning force microscopy (SFM) techniques become increasingly important. In addition to topographic information, various surface properties can be recorded on a nanometer length scale, such as electrical conductivity (conductive scanning force microscopy, C-SFM) and surface potential (Kelvin probe force microscopy, KPFM).rnrnIn the context of this work, the electrical SFM modes were applied to study the interplay be-tween morphology and electrical properties in hybrid optoelectronic structures, developed in the group of Prof. J. Gutmann (MPI-P Mainz). In particular, I investigated the working prin-ciple of a novel integrated electron blocking layer system. A structure of electrically conduct-ing pathways along crystalline TiO2 particles in an insulating matrix of a polymer derived ceramic was found and insulating defect structures could be identified. In order to get insights into the internal structure of a device I investigated a working hybrid solar cell by preparing a cross cut with focused ion beam polishing. With C-SFM, the functional layers could be identified and the charge transport properties of the novel active layer composite material could be studied. rnrnIn C-SFM, soft surfaces can be permanently damaged by (i) tip induced forces, (ii) high elec-tric fields and (iii) high current densities close to the SFM-tip. Thus, an alternative operation based on torsion mode topography imaging in combination with current mapping was intro-duced. In torsion mode, the SFM-tip vibrates laterally and in close proximity to the sample surface. Thus, an electrical contact between tip and sample can be established. In a series of reference experiments on standard surfaces, the working mechanism of scanning conductive torsion mode microscopy (SCTMM) was investigated. Moreover, I studied samples covered with free standing semiconducting polymer nano-pillars that were developed in the group of Dr. P. Theato (University Mainz). The application of SCTMM allowed non-destructive imag-ing of the flexible surface at high resolution while measuring the conductance on individual pillarsrnrnIn order to study light induced electrical effects on the level of single nanostructures, a new SFM setup was built. It is equipped with a laser sample illumination and placed in inert at-mosphere. With this photoelectric SFM, I investigated the light induced response in function-alized nanorods that were developed in the group of Prof. R. Zentel (University Mainz). A block-copolymer containing an anchor block and dye moiety and a semiconducting conju-gated polymer moiety was synthesized and covalently bound to ZnO nanorods. This system forms an electron donor/acceptor interface and can thus be seen as a model system of a solar cell on the nanoscale. With a KPFM study on the illuminated samples, the light induced charge separation between the nanorod and the polymeric corona could not only be visualized, but also quantified.rnrnThe results demonstrate that electrical scanning force microscopy can study fundamental processes in nanostructures and give invaluable feedback to the synthetic chemists for the optimization of functional nanomaterials.rn
Resumo:
Die vorliegende Dissertation untersucht Nanopartikel und Nanokapseln aus verschiedenen Materialien mit verschiedenen Modifikationen für einen zielgerichteten Medikamententransport (Drug Targeting). Obwohl bisher zahlreiche Nanopartikel und -kapseln synthetisiert wurden, besteht nach wie vor hinsichtlich der zellulären Verträglichkeit, Biokompatibilität und Aufnahme kein allumfassendes Verständnis. Mit Hilfe der in dieser Arbeit vorgestellten Untersuchungen und Ergebnissen soll ein Beitrag zur Schließung dieser Lücke geleistet werden.rnIm Rahmen der vorliegenden Dissertation wurde der Einfluss der Herstellungsmaterialien PS, PLLA, PMMA, Biomakromoleküle (BSA, DNA), ggf. stabilisiert durch HPMA-LMA-Copolymere und neu-synthetisierte Surfmere, der Formmodifikationen Streckung und Kristallisierung, der Oberflächenmodifikationen mittels verschiedener Tenside und PEG auf die zelluläre Aufnahme und Verträglichkeit hin untersucht.rnZusammenfassend lässt sich die Aussage treffen, dass zahlreiche Materialien zur Herstellung von Trägersystemen geeignet sind und sich als biokompatibel und nicht-zytotoxisch erwiesen haben, sich jedoch stark hinsichtlich der Aufnahmeeffizienz in verschiedene Zelllinien unterscheiden. rnIm ersten Abschnitt (Kapitel 5.1) wurden in der ersten und zweiten Untersuchung auf allgemeine Parameter, die die Aufnahme von Nanopartikeln beeinflussen, eingegangen. Hier wurde der Einfluss des Alters von PLLA-Partikeln auf die zelluläre Aufnahme und Toxizität untersucht. Es konnte gezeigt werden, dass mit zunehmender Materialalterung die zelluläre Aufnahme abnimmt. Eine Zytotoxizität konnte nicht gezeigt werden.rnWeiterhin wurde der Einfluss des FCS-Gehalts des Zell-Mediums auf die zelluläre Aufnahme von PMMA-Partikeln untersucht. Es konnte gezeigt werden, dass mit einer steigenden FCS-Konzentration eine Abnahme der zellulären Aufnahme von PMMA-Partikeln einhergeht. Die höchste zelluläre Aufnahme konnte bei einem FCS-Gehalt des Zellmediums von 0,05% verzeichnet werden. rnIm zweiten Abschnitt (Kapitel 5.2) wurde die Stabilisierung von Nanopartikeln mittels neusynthetisierter Tenside und deren Einfluss auf die Zelle-Nanopartikel-Interaktionen untersucht. Dazu wurde zum einen die Oberflächenfunktionalisierung von Nanopartikeln mit Hilfe neu-synthetisierter „Surfmere“ und deren Einfluss auf die zelluläre Aufnahme und Toxizität untersucht. Die hergestellten Surfmere bewirken gleichzeitig eine Stabilisierung und Funktionalisierung der Nanopartikeloberfläche mit Phosphonatgruppen. Hier wurden kovalente „Surfmer“ stabilisierte Nanopartikel mit Tensid- (SDP) stabilisierten Nanopartikeln verglichen. Zudem wurden dialysierte Nanopartikel mit nicht-dialysierten verglichen. Bezüglich der zellulären Aufnahme konnte für die mittels Dialyse gereinigten Nanopartikel eine gute Aufnahme ohne Unterschiede zwischen den kovalent und nicht-kovalent Phosphonat-funktionalisierten Partikeln beobachtet werden. Die ungereinigten, SDP-stabilisierte, nicht-kovalent gebundene Nanopartikel zeigten hingegen eine bis zu 30% stärkere Aufnahme in die HeLa-Zellen und hMSCs.rnWeiterhin der Einsatz von mit HPMA-LMA-Copolymeren stabilisierte Polystyrol- und PLLA-Partikel, die den Einsatz von Tensiden während des Miniemulsionsprozesses überflüssig machen, untersucht. Auch hier konnte keine Zytotoxizität nachgewiesen werden. Die Aufnahme in HeLa-Zellen scheint mehr von der Größe der Nanopartikel als vom verwendeten Material und in hMSCs mehr von den Oberflächeneigenschaften der Nanopartikel abzuhängen.rnIm dritten Abschnitt (Kapitel 5.3) wird auf die Möglichkeit der Formmodifikation von Polystyrol-Partikeln und deren Einfluss auf die Nanopartikel-Zelle-Interaktionen eingegangen. Es geht dabei um die Aufnahme und Zytotoxizität von verstreckten (elongierten) Polystyrol-Partikeln im Vergleich zu sphärischen Nanopartikeln, sowie die Aufnahme und Zytotoxizität von kristallinen Polystyrol-Partikeln in verschiedene Zelllinien. Bei den verstreckten Partikeln nimmt die Aufnahme-Effizienz in HeLa-Zellen und hMSCs mit zunehmender Verstreckung ab. Eine Zytotoxizität konnte für keinen der erwähnten Nanopartikel nachgewiesen werden. Bei den Polystyrol-Partikeln unterschiedlicher Taktizität zeigen die kristallierten Polystyrol-Partikel eine geringfügig besser Aufnahme-Rate als die nicht-kristallierten Polystyrol-Partikel. Dabei zeigen die nach dem Herstellungsprozess mittels der Lösemittelverdampfungstechnik der wässrigen Phase entnommenen Partikel eine bessere Aufnahme als die nach der Verdampfung des Chloroforms verfügbaren Partikel. Insgesamt konnte jedoch für alle Polystyrol-Partikel trotz der unterschiedlichen Taktizitäten nach der Aufnahme in HeLa-Zellen und hMSCs mittels Durchflusszytometrie hohe Fluoreszenz-Intensitäten verzeichnet werden. Setzt man hohe Fluoreszenz-Intensitäten bei in Zellen aufgenommenen Partikeln mit guten Aufnahmeraten gleich, sind die hier dargestellten Aufnahmeraten als sehr gut zu bezeichnen. rnAuf Nanosysteme mit einer reduzierten zellulären Aufnahme wird im letzten Abschnitt (Kapitel 5.4) eingegangen. Dabei wird zum einen die unterschiedliche Oberflächenmodifikation von Polystyrol-Partikeln mit dem Co-Monomer PEG-MA und den Tensiden SDS und Lutensol AT50 untersucht. Von PEG-MA wurden zudem verschiedene Molekulargewichte (Mn=300 g•mol-1 und Mn=2080 g•mol-1) und verschiedene Konzentrationen (1,5%, 5%, 10%) eingesetzt. Ein Teil der Partikel wurde mit SDS und der andere Teil mit Lutensol AT50 hergestellt. In einem weiteren Schritt wurde das jeweilig gegenteilige Tensid (statt SDS Lutensol AT50 und umgekehrt) eingesetzt, um zu überprüfen, ob sich der zuvor beobachtete Effekt umkehren lässt. Anschließend wurde ein erst mit SDS stabilisierter Nanopartikel (BR01) mit verschiedenen Lutensol AT50-Anteilen (5%, 10%, 25%, 50%, 100%) redispergiert. Die effizienteste Aufnahme zeigte der unmodifizierte, mit SDS stabilisierte Nanopartikel BR01, die niedrigste der ebenfalls unmodifizierte, mit Lutensol AT50 stabilisierte Nanopartikel BR02. Eine steigende Konzentration des PEG-MA Mn=300 g•mol-1 hemmt die Aufnahme von mit SDS stabilisierten Partikeln konstant. Für PEG-MA Mn=2080 g•mol-1 konnte hingegen kein Einfluss nachgewiesen werden. Für die mit Lutensol AT50 stabilisierten Partikel konnte kein Einfluss von PEG-MA nachgewiesen werden. Daraus resultiert, dass der Einsatz von physikalisch adsorbiertem Lutensol AT50 die zelluläre Aufnahme effektiver hemmt als der Einsatz von kovalent gebundenem PEG-MA unterschiedlicher Kettenlänge.rnDer Einsatz von mit Biomakromolekülen hergestellten Nanokapseln, die mit zwei verschiedenen Tensiden (SDS und Lutensol AT50) stabilisiert wurden, wurde im Weiteren näher untersucht. Bei den mit SDS stabilisierten Kapseln erwiesen sich die mit ssDNA hergestellten Kapseln BN-54 und BN-55 als leicht toxisch für die HeLa-Zellen. Dagegen sind alle eingesetzten, mit Lutensol AT50 redispergierten Nanokapseln sowohl für HeLa-Zellen als auch für hMSCs zytotoxisch. Hier ist die toxische Wirkung auf das nicht-ionische Tensid Lutensol AT50 zurückzuführen. Eine zelluläre Aufnahme konnte für keine mit Biomakromolekülen hergestellten Nanokapsel nachgewiesen werden.rnDen Abschluss der Untersuchungen bildet die vergleichende Analyse der in dieser Arbeit mit dem Fluoreszenzfarbstoff PMI versehenen Partikeln hinsichtlich deren Aufnahme in HeLa-Zellen und hMSCs und deren zytotoxische Auswirkungen. In der vergleichenden Analyse werden die zuvor vorgestellten Ergebnisse für PMI-Partikeln nochmal im Kontext betrachtet. Dabei erwies sich sowohl für die HeLa-Zellen als auch für die hMSCs, dass die meisten Partikel eine geringe bis keine zelluläre Aufnahme zeigen. Eine gute Aufnahme konnte nur für wenige Nanopartikel (vor allem für die kristallinen Nanopartikel) verzeichnet werden. Eine Korrelation zwischen der Aufnahmeeffizienz und der Zytotoxizität konnte nicht nachgewiesen werden. rn
Resumo:
The adsorption of particles and surfactants at water-oil interfaces has attracted continuous attention because of its emulsion stabilizing effect and the possibility to form two-dimensional materials. Herein, I studied the interfacial diffusion of single molecules and nanoparticles at water-oil interfaces using fluorescence correlation spectroscopy. rnrnFluorescence correlation spectroscopy (FCS) is a promising technique to study diffusion of fluorescent tracers in diverse conditions. This technique monitors and analyzes the fluorescence fluctuation caused by single fluorescent tracers coming in and out of a diffraction-limited observation volume “one at a time”. Thus, this technique allows a combination of high precision, high spatial resolution and low tracer concentration. rnrnIn chapter 1, I discussed some controversial questions regarding the properties of water-hydrophobic interfaces and also introduced the current progress on the stability and dynamic of single nanoparticles at water-oil interfaces. The materials and setups I used in this thesis were summarized in chapter 2. rnrnIn chapter 3, I presented a new strategy to study the properties of water-oil interfaces. The two-dimensional diffusion of isolated molecular tracers at water/n-alkane interfaces was measured using fluorescence correlation spectroscopy. The diffusion coefficients of larger tracers with a hydrodynamic radius of 4.0 nm agreed well with the values calculated from the macroscopic viscosities of the two bulk phases. However, for small molecule tracers with hydrodynamic radii of only 1.0 and 0.6 nm, notable deviations were observed, indicating the existence of an interfacial region with a reduced effective viscosity. rnrnIn chapter 4, the interfacial diffusion of nanoparticles at water-oil interfaces was investigated using FCS. In stark contrast to the interfacial diffusion of molecular tracers, that of nanoparticles at any conditions is slower than the values calculated in accordance to the surrounding viscosity. The diffusion of nanoparticles at water-oil interfaces depended on the interfacial tension of liquid-liquid interfaces, the surface properties of nanoparticles, the particle sizes and the viscosities of surrounding liquid phases. In addition, the interfacial diffusion of nanoparticles with Janus motif is even slower than that of their symmetric counterparts. Based on the experimental results I obtained, I drew some possibilities to describe the origin of nanoparticle slowdown at water-oil interfaces.
Resumo:
A simple dependency between contact angle θ and velocity or surface tension has been predicted for the wetting and dewetting behavior of simple liquids. According to the hydrodynamic theory, this dependency was described by Cox and Voinov as θ ∼ Ca^(1/3) (Ca: Capillary number). For more complex liquids like surfactant solutions, this prediction is not directly given.rnHere I present a rotating drum setup for studying wetting/dewetting processes of surfactant solutions on the basis of velocity-dependent contact angle measurements. With this new setup I showed that surfactant solutions do not follow the predicted Cox-Voinov relation, but showed a stronger contact angle dependency on surface tension. All surfactants independent of their charge showed this difference from the prediction so that electrostatic interactions as a reason could be excluded. Instead, I propose the formation of a surface tension gradient close to the three-phase contact line as the main reason for the strong contact angle decrease with increasing surfactant concentration. Surface tension gradients are not only formed locally close to the three-phase contact line, but also globally along the air-liquid interface due to the continuous creation/destruction of the interface by the drum moving out of/into the liquid. By systematically hindering the equilibration routes of the global gradient along the interface and/or through the bulk, I was able to show that the setup geometry is also important for the wetting/dewetting of surfactant solutions. Further, surface properties like roughness or chemical homogeneity of the wetted/dewetted substrate influence the wetting/dewetting behavior of the liquid, i. e. the three-phase contact line is differently pinned on rough/smooth or homogeneous/inhomogeneous surfaces. Altogether I showed that the wetting/dewetting of surfactant solutions did not depend on the surfactant type (anionic, cationic, or non-ionic) but on the surfactant concentration and strength, the setup geometry, and the surface properties.rnSurfactants do not only influence the wetting/dewetting behavior of liquids, but also the impact behavior of drops on free-standing films or solutions. In a further part of this work, I dealt with the stability of the air cushion between drop and film/solution. To allow coalescence between drop and substrate, the air cushion has to vanish. In the presence of surfactants, the vanishing of the air is slowed down due to a change in the boundary condition from slip to no-slip, i. e. coalescence is suppressed or slowed down in the presence of surfactant.
Resumo:
This thesis describes the investigation of systematically varied organic molecules for use in molecular self-assembly processes. All experiments were performed using high-resolution non-contact atomic force microscopy under UHV conditions and at room temperature. Using this technique, three different approaches for influencing intermolecular and molecule-surface interaction on the insulating calcite(10.4) surface were investigated by imaging the structure formation at the molecular scale. I first demonstrated the functionalization of shape-persistent oligo(p-benzamide)s that was engineered by introducing different functional groups and investigating their effect on the structural formation on the sample surface. The molecular core was designed to provide significant electrostatic anchoring towards the surface, while at the same time maintaining the flexibility to fine-tune the resulting structure by adjusting the intermolecular cohesion energy. The success of this strategy is based on a clear separation of the molecule-substrate interaction from the molecule-molecule interaction. My results show that sufficient molecule-surface anchoring can be achieved without restricting the structural flexibility that is needed for the design of complex molecular systems. Three derivatives of terephthalic acid (TPA) were investigated in chapter 7. Here, the focus was on changing the adhesion to the calcite surface by introducing different anchor functionalities to the TPA backbone. For all observed molecules, the strong substrate templating effect results in molecular structures that are strictly oriented along the calcite main crystal directions. This templating is especially pronounced in the case of 2-ATPA where chain formation on the calcite surface is observed in contrast to the formation of molecular layers in the bulk. At the same time, the amino group of 2-ATPA proved an efficient anchor functionality, successfully stabilizing the molecular chains on the sample surface. These findings emphasizes, once again, the importance of balancing and fine-tuning molecule-molecule and molecule-surface interactions in order to achieve stable, yet structurally flexible molecular arrangements on the sample surface. In the last chapter, I showed how the intrinsic property of molecular chirality decisively influences the structure formation in molecular self-assembly. This effect is especially pronounced in the case of the chiral heptahelicene-2-carboxylic acid. Deposition of the enantiopure molecules results in the formation of homochiral islands on the sample surface which is in sharp contrast to the formation of uni-directional double rows upon deposition of the racemate onto the same surface. While it remained uncertain from these previous experiments whether the double rows are composed of hetero- or homochiral molecules, I could clearly answer that question here and demonstrate that the rows are of heterochiral origin. Chirality, thus, proves to be another important parameter to steer the intermolecular interaction on surfaces. Altogether, the results of this thesis demonstrate that, in order to successfully control the structure formation in molecular self-assembly, the correct combination of molecule and surface properties is crucial. This is of special importance when working on substrates that exhibit a strong influence on the structure formation, such as the calcite(10.4) surface. Through the systematic variation of functional groups several important parameters that influence the balance between molecule-surface and molecule-molecule interaction were identified here, and the results of this thesis can, thus, act as a guideline for the rational design of molecules for use in molecular self-assembly.
Resumo:
The thesis can be divided in four parts and summarized as follows:(i) The investigation and development of a continuous flow synthesis procedure affording end-functional polymers by anionic polymerization and subsequent termination in one reaction step and on a multigram scale was carried out. Furthermore, the implementation of not only a single hydroxyl but multiple orthogonal functionalities at the chain terminus was achieved by utilizing individually designed, functional epoxide-based end-capping reagents.(ii) In an additional step, the respective polymers were used as macroinitiators to prepare in-chain functionalized block copolymers and star polymers bearing intriguing novel structural and material properties. Thus, the second part of this thesis presents the utilization of end-functional polymers as precursors for the synthesis of amphiphilic complex and in some cases unprecedented macromolecular architectures, such as miktoarm star polymers based on poly(vinyl pyridine), poly(vinyl ferrocene) and PEO.(iii) Based on these structures, the third part of this thesis represents a detailed investigation of the preparation of stimuli-responsive ultrathin polymer films, using amphiphilic junction point-reactive block copolymers. The single functionality at the block interface can be employed as anchor group for the covalent attachment on surfaces. Furthermore, the change of surface properties was studied by applying different external stimuli.(iv) An additional topic related to the oxyanionic polymerizations carried out in the context of this thesis was the investigation of viscoelastic properties of different hyperbranched polyethers, inspired by the recent and intense research activities in the field of biomedical applications of multi-functional hyperbranched materials.
Resumo:
Diese Arbeit stellt eine ausführliche Studie fundamentaler Eigenschaften der Kalzit CaCO3(10.4) und verwandter Mineraloberflächen dar, welche nicht nur durch die Verwendung von Nichtkontakt Rasterkraftmikroskopie, sondern hauptsächlich durch die Messung von Kraftfeldern ermöglicht wurde. Die absolute Oberflächenorientierung sowie der hierfür zugrundeliegende Prozess auf atomarer Skala konnten erfolgreich für die Kalzit (10.4) Oberfläche identifiziert werden.rnDie Adsorption chiraler Moleküle auf Kalzit ist relevant im Bereich der Biomineralisation, was ein Verständnis der Oberflächensymmetrie unumgänglich macht. Die Messung des Oberflächenkraftfeldes auf atomarer Ebene ist hierfür ein zentraler Aspekt. Eine solche Kraftkarte beleuchtet nicht nur die für die Biomineralisation wichtige Wechselwirkung der Oberfläche mit Molekülen, sondern enthält auch die Möglichkeit, Prozesse auf atomarer Skala und damit Oberflächeneigenschaften zu identifizieren.rnDie Einführung eines höchst flexiblen Messprotokolls gewährleistet die zuverlässige und kommerziell nicht erhältliche Messung des Oberflächenkraftfeldes. Die Konversion der rohen ∆f Daten in die vertikale Kraft Fz ist jedoch kein trivialer Vorgang, insbesondere wenn Glätten der Daten in Frage kommt. Diese Arbeit beschreibt detailreich, wie Fz korrekt für die experimentellen Bedingungen dieser Arbeit berechnet werden können. Weiterhin ist beschrieben, wie Lateralkräfte Fy und Dissipation Γ erhalten wurden, um das volle Potential dieser Messmethode auszureizen.rnUm Prozesse auf atomarer Skala auf Oberflächen zu verstehen sind die kurzreichweitigen, chemischen Kräfte Fz,SR von größter Wichtigkeit. Langreichweitige Beiträge müssen hierzu an Fz angefittet und davon abgezogen werden. Dies ist jedoch eine fehleranfällige Aufgabe, die in dieser Arbeit dadurch gemeistert werden konnte, dass drei unabhängige Kriterien gefunden wurden, die den Beginn zcut von Fz,SR bestimmen, was für diese Aufgabe von zentraler Bedeutung ist. Eine ausführliche Fehleranalyse zeigt, dass als Kriterium die Abweichung der lateralen Kräfte voneinander vertrauenswürdige Fz,SR liefert. Dies ist das erste Mal, dass in einer Studie ein Kriterium für die Bestimmung von zcut gegeben werden konnte, vervollständigt mit einer detailreichen Fehleranalyse.rnMit der Kenntniss von Fz,SR und Fy war es möglich, eine der fundamentalen Eigenschaften der CaCO3(10.4) Oberfläche zu identifizieren: die absolute Oberflächenorientierung. Eine starke Verkippung der abgebildeten Objekte