2 resultados para Superficial density of reactive groups

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A one-dimensional multi-component reactive fluid transport algorithm, 1DREACT (Steefel, 1993) was used to investigate different fluid-rock interaction systems. A major short coming of mass transport calculations which include mineral reactions is that solid solutions occurring in many minerals are not treated adequately. Since many thermodynamic models of solid solutions are highly non-linear, this can seriously impact on the stability and efficiency of the solution algorithms used. Phase petrology community saw itself faced with a similar predicament 10 years ago. To improve performance and reliability, phase equilibrium calculations have been using pseudo compounds. The same approach is used here in the first, using the complex plagioclase solid solution as an example. Thermodynamic properties of a varying number of intermediate plagioclase phases were calculated using ideal molecular, Al-avoidance, and non-ideal mixing models. These different mixing models can easily be incorporated into the simulations without modification of the transport code. Simulation results show that as few as nine intermediate compositions are sufficient to characterize the diffusional profile between albite and anorthite. Hence this approach is very efficient, and can be used with little effort. A subsequent chapter reports the results of reactive fluid transport modeling designed to constrain the hydrothermal alteration of Paleoproterozoic sediments of the Southern Lake Superior region. Field observations reveal that quartz-pyrophyllite (or kaolinite) bearing assemblages have been transformed into muscovite-pyrophyllite-diaspore bearing assemblages due to action of fluids migrating along permeable flow channels. Fluid-rock interaction modeling with an initial qtz-prl assemblage and a K-rich fluid simulates the formation of observed mineralogical transformation. The bulk composition of the system evolves from an SiO2-rich one to an Al2O3+K2O-rich one. Simulations show that the fluid flow was up-temperature (e.g. recharge) and that fluid was K-rich. Pseudo compound approach to include solid solutions in reactive transport models was tested in modeling hydrothermal alteration of Icelandic basalts. Solid solutions of chlorites, amphiboles and plagioclase were included as the secondary mineral phases. Saline and fresh water compositions of geothermal fluids were used to investigate the effect of salinity on alteration. Fluid-rock interaction simulations produce the observed mineral transformations. They show that roughly the same alteration minerals are formed due to reactions with both types of fluid which is in agreement with the field observations. A final application is directed towards the remediation of nitrate rich groundwaters. Removal of excess nitrate from groundwater by pyrite oxidation was modeled using the reactive fluid transport algorithm. Model results show that, when a pyrite-bearing, permeable zone is placed in the flow path, nitrate concentration in infiltrating water can be significantly lowered, in agreement with proposals from the literature. This is due to nitrogen reduction. Several simulations investigate the efficiency of systems with different mineral reactive surface areas, reactive barrier zone widths, and flow rates to identify the optimum setup.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The global mid-ocean ridge system creates oceanic crust and lithosphere that covers more than two-thirds of the Earth. Basalts are volumetrically the most important rock type sampled at mid-ocean ridges. For this reason, our present understanding of upper mantle dynamics and the chemical evolution of the earth is strongly influenced by the study of mid-ocean ridge basalts (MORB). However, MORB are aggregates of polybarically generated small melt increments that can undergo a variety of physical and chemical processes during their ascent and consequently affect their derivative geochemical composition. Therefore, MORB do not represent “direct” windows to the underlying upper mantle. Abyssal peridotites, upper mantle rocks recovered from the ocean floor, are the residual complement to MORB melting and provide essential information on melt extraction from the upper mantle. In this study, abyssal peridotites are examined to address these overarching questions posed by previous studies of MORB: How are basaltic melts formed in the mantle, how are they extracted from the mantle and what physical and chemical processes control mantle melting? The number of studies on abyssal peridotites is small compared to those on basalts, in part because seafloor exposures of abyssal peridotites are relatively rare. For this reason, abyssal peridotite characteristics need to be considered in the context of subaerially exposed peridotites associated with ophiolites, orogenic peridotite bodies and basalt-hosted xenoliths. However, orogenic peridotite bodies are mainly associated with passive continental margins, most ophiolites are formed in supra-subduction zone settings, and peridotite xenoliths are often contaminated by their host magma. Therefore, studies of abyssal peridotites are essential to understanding the primary characteristics of the oceanic upper mantle free from the influence of continental rifting, subduction and tectonic emplacement processes. Nevertheless, numerous processes such as melt stagnation and cooling-induced, inter-mineral exchange can affect residual abyssal peridotite compositions after the cessation of melting. The aim of this study is to address these post-melting modifications of abyssal peridotites from a petrological-geochemical perspective. The samples in this study were dredged along the axis of the ultraslow-spreading Gakkel Ridge in the Arctic Ocean within the “Sparsely Magmatic Zone”, a 100 km ridge section where only mantle rocks are exposed. During two expeditions (ARK XVII-2 in 2001 and ARK XX-2 in 2004), exceptionally fresh peridotites were recovered. The boulders and cobbles collected cover a range of mantle rock compositions, with most characterized as plagioclase-free spinel peridotites or plagioclase- spinel peridotites. This thesis investigates melt stagnation and cooling processes in the upper mantle and is divided into two parts. The first part focuses on processes in the stability field of spinel peridotites (>10 kb) such as melt refertilization and cooling related trace element exchange, while the second part investigates processes in the stability field of plagioclase peridotites (< 10 kb) such as reactive melt migration and melt stagnation. The dissertation chapters are organized to follow the theoretical ascent of a mantle parcel upwelling beneath the location where the samples were collected.