3 resultados para Stress-strain curves
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
The aim of this work is to measure the stress inside a hard micro object under extreme compression. To measure the internal stress, we compressed ruby spheres (a-Al2O3: Cr3+, 150 µm diameter) between two sapphire plates. Ruby fluorescence spectrum shifts to longer wavelengths under compression and can be related to the internal stress by a conversion coefficient. A confocal laser scanning microscope was used to excite and collect fluorescence at desired local spots inside the ruby sphere with spatial resolution of about 1 µm3. Under static external loads, the stress distribution within the center plane of the ruby sphere was measured directly for the first time. The result agreed to Hertz’s law. The stress across the contact area showed a hemispherical profile. The measured contact radius was in accord with the calculation by Hertz’s equation. Stress-load curves showed spike-like decrease after entering non-elastic phase, indicating the formation and coalescence of microcracks, which led to relaxing of stress. In the vicinity of the contact area luminescence spectra with multiple peaks were observed. This indicated the presence of domains of different stress, which were mechanically decoupled. Repeated loading cycles were applied to study the fatigue of ruby at the contact region. Progressive fatigue was observed when the load exceeded 1 N. As long as the load did not exceed 2 N stress-load curves were still continuous and could be described by Hertz’s law with a reduced Young’s modulus. Once the load exceeded 2 N, periodical spike-like decreases of the stress could be observed, implying a “memory effect” under repeated loading cycles. Vibration loading with higher frequencies was applied by a piezo. Redistributions of intensity on the fluorescence spectra were observed and it was attributed to the repopulation of the micro domains of different elasticity. Two stages of under vibration loading were suggested. In the first stage continuous damage carried on until certain limit, by which the second stage, e.g. breakage, followed in a discontinuous manner.
Resumo:
This dissertation describes the synthesis of surface attached hydrogel biomaterials, characterization of their properties, evaluation of structuring concepts and the investigation of these materials in the isolation of DNA from human whole blood. Photosensitive hydrogel precursor materials on the basis of hydroxyethylmethacrylate (HEMA) were synthesized by free radical polymerization. In order to obtain surface bound hydrogel films, the precursors were deposited on a suitable substrate and subsequently irradatiated with UV - light to accomplish the formation of crosslinks in the film and create surface attachment. The composition of the polymerization precursor materials was determined by comprehensive NMR and GPC studies, revealing the copolymerizationrnbehaviour of the used monomers - HEMA derivatives and the photocrosslinkerrnMABP - and their respective distribution in the hydrogel precursors. The degree of crosslinking of the hydrogels was characterized with UV/vis spectroscopy. Stress-strain measurements were conducted in order to investigate the mechanical properties of the biomaterials. Moreover, the swelling process and biomolecule adsorption properties of the hydrogels were investigated with SPR/OW spectroscopy. For this, the deposition and binding of the hydrogels on gold or SiO2 surfaces was facilitated with photocrosslinkable adhesion promotors. The produced hydrogels were mechanically rigid and stablernunder the conditions of PCR and blood lysis. Furthermore, strategies towards the increase of hydrogel surface structure and porosity with porosigens, 2D laser interference lithography and photocleavable blockcopolymers were investigated. At last, a combinatorial strategy was used for the determination of the usefulness of hydrogels for the isolation from DNA from blood. A series of functionalized hydrogel precursors were synthesized, transferred to the surface inside a PCR tube and subsequently screened in regard to DNA adsorption properties with Taqman quantitative PCR. This approach yielded a promising candidate for a functional PCR tube coating that would allow the entire DNA isolation procedure being carried out in a single reaction container.rnThereforce, the practical application of such macromolecular architectures can be envisioned to improve industrial DNA diagnostic processes.
Resumo:
Das Studium der Auflösungs- und Wachstumsprozesse an Feststoff-Flüssigkeits-Grenzflächen unter nicht-hydrostatischen Beanspruchungen ist wesentlich für das Verständnis von Defor-mationsprozessen, die in der Erde ablaufen. Unter diesen genannten Prozessen gehört die Drucklösung zu den wichtigsten duktilen Deformationsprozessen, von der Diagenese bishin zur niedrig- bis mittelgradigen metamorphen Bedingungen. Bisher ist allerdings wenig darüber bekannt, welche mechanischen, physikalischen oder chemischen Potentialenergie-Gradienten die Drucklösung steuern. I.a. wird angenommen, daß die Drucklösung durch Un-terschiede kristallplastischer Verformungsenergien oder aber durch Unterschiede der Normal-beanspruchung an Korngrenzen gesteuert wird. Unterschiede der elastischen Verformungs-energien werden dabei allerdings als zu gering erachtet, um einen signifikanten Beitrag zu leisten. Aus diesem Grund werden sie als mögliche treibende Kräfte für die Drucklösung vernachlässigt. Andererseits haben neue experimentelle und theoretische Untersuchungen gezeigt, daß die elastische Verformung in der Tat einen starken Einfluß auf Lösungs- und Wachstumsmechanismen von Kristallen in einer Lösung haben kann. Da die in der Erdkruste vorherrschenden Deformationsmechanismen überwiegend im elastischen Verformungsbereich der Gesteine ablaufen, ist es sehr wichtig, das Verständnis für die Effekte, die die elastische Verformung verursacht, zu erweitern, und ihre Rolle während der Deformation durch Drucklösung zu definieren. Die vorliegende Arbeit beschäftigt sich mit Experimenten, bei denen der Effekt der mechanisch kompressiven Beanspruchung auf Lösungs- und Wachstumsprozesse von Einzelkristallen unterschiedlicher, sehr gut löslicher, elastisch/spröder Salze untersucht wurde. Diese Salze wurden als Analoga gesteinsbildender Minerale wie Quarz und Calcit ausgewählt. Der Einfluß von Stress auf die Ausbildung der Oberflächenmikrostrukturen in einer untersättigten Lösung wurde an Kaliumalaun untersucht.Lösungsrillen (20 40 µm breit, 10 40 µm tief und 20 80 µm Abstand) entwickelten sich in den Bereichen, in denen die Beanspruchung im Kristall am größten war. Sie verschwanden wieder, sobald der Kristall entlastet wurde. Diese Rillen entwickelten sich parallel zu niedrig indizierten kristallographischen Richtungen und sub-perpendikular zu den Trajektorien, die der maximalen, lokalen kompressiven Beanspruchung entsprachen. Die Größe der Lösungsrillen hing von der lokalen Oberflächenbeanspruchung, der Oberflächenenergie und dem Untersättigungsgrad der wässrigen Lösung ab. Die mikrostrukturelle Entwicklung der Kristalloberflächen stimmte gut mit den theoretischen Vorhersagen überein, die auf den Modellen von Heidug & Leroy (1994) und Leroy & Heidug (1994) basieren. Der Einfluß der Beanspruchung auf die Auflösungsrate wurde an Natriumchlorat-Einzelkristallen untersucht. Dabei wurde herausgefunden, daß sich gestresste Kristalle schneller lösen als Kristalle, auf die keine Beanspruchung einwirkt. Der experimentell beobachtete Anstieg der Auflösungsrate der gestressten Kristalle war ein bis zwei Größenordnungen höher als theoretisch erwartet. Die Auflösungsrate stieg linear mit dem Stress an, und der Anstieg war um so größer, je stärker die Lösung untersättigt war. Außerdem wurde der Effekt der Bean-spruchung auf das Kristallwachstum an Kaliumalaun- und Kaliumdihydrogenphosphat-Ein-zelkristallen untersucht. Die Wachstumsrate der Flächen {100} und {110} von Kalium-alaun war bei Beanspruchung stark reduziert. Für all diese Ergebnisse spielte die Oberflächenrauhigkeit der Kristalle eine Schlüsselrolle, indem sie eine nicht-homogene Stressverteilung auf der Kristalloberfläche verursachte. Die Resultate zeigen, daß die elastische Verformung eine signifikante Rolle während der Drucklösung spielen kann, und eine signifikante Deformation in der oberen Kruste verursachen kann, bei Beanspruchungen, die geringer sind, als gemeinhin angenommen wird. Somit folgt, daß die elastische Bean-spruchung berücksichtigt werden muß, wenn mikrophysikalische Deformationsmodelle entwickelt werden sollen.