4 resultados para Stress Disorders, Post-Traumatic
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Zerebrale Erkrankungen, wie Schädelhirntrauma (SHT) und Subarachnoidalblutung (SAB) sind mit einer hohen Morbidität und Mortalität vergesellschaftet und stellen eine ernsthafte medizinische und ökonomische Herausforderung dar. Grundlage für die Entwicklung neuer effektiver Therapieansätze ist das Verständnis der pathophysiologischen Mechanismen dieser Krankheiten. Das Entstehen eines vasogenen Hirnödems ist eine schwere Komplikation nach SHT und SAB und beruht u.a. auf einem Öffnen der Bluthirnschranke (BHS). Ein möglicher zu Grunde liegender Mechanismus könnte die Aktivierung der Myosin-leichte-Kette-Kinase (MLCK) sein, was man therapeutisch unterbinden könnte.rnIn der vorliegenden Studie wurde in zwei unterschiedlichen experimentellen, zerebralen Schadensmodellen der Einfluss des kontraktilen Apparates auf die BHS Störung untersucht. In dem Schadensmodell des SHT sind die Hauptergebnisse: 1.) die Myosin-leichte-Kette-Kinase (MLCK) wird durch das induzierte Schädelhirntrauma hochreguliert. 2.) eine pharmakologische MLCK Inhibition stabilisiert die BHS, senkt den ICP und das Hirnödem nach experimentellen SHT. 3.) die MLCK Inhibition führte nicht zu einer Verbesserung des Hirnschadens, der neurologischen Funktion oder der zerebralen Inflammation 24 Stunden nach SHT, obwohl angenommen wird, dass die Entstehung eines Hirnödems den sekundären Hirnschaden vergrößert. In einer weitern Studie wurde untersucht, durch welchen Signalweg dieser zugrunde liegende Mechanismus aktiviert wird. In einem in-vitro BHS Model konnte gezeigt werden, dass C-reaktives Protein (CRP) über die Bindung an Fcγ-Rezeptoren den kontraktilen Apparat aktiviert und somit zu einem Öffnen der BHS führt. Obwohl der CRP Plasmaspiegel nach experimentellen SHT ansteigt, kommt es nicht zu einer Verringerungrndes Hirnwassergehaltes in FcγR-/- Mäusen. Die Entstehung des vasogenen Hirnödems wird im murinen CCI Model somit nicht über den Fcγ-Rezeptor vermittelt. Die in-vitro gezeigte Fcγ vermittelte Öffnung der BHS konnte in-vivo in dieser Studie nicht reproduziert werden. Mit der vorliegenden Studie kann nicht ausgeschlossen werden, dass CRP über einen Fcγ unabhängigen Mechanismus eine Öffnung der BHS vermittelt. Jedoch deuten die Daten daraufhin, das CRP im murinen CCI Model eine untergeordnete Rolle spielt. Die FcγR-/- Mäuse zeigten allerdings ein deutlich reduziertes Kontusionsvolumen und eine reduzierte Mikroglia Aktivierung, was darauf hindeutet, dass FcγR eine wesentliche Rolle bei der zerebralen Inflammation spielen.rnIn dem Schadensmodell der experimentellen SAB konnte gezeigt werden, dass die Inhibition der MLCK die Folgen einer SAB mindert. Sie führt zu einer Senkung des Hirnödems, des intrakraniellen Drucks und Verbesserung der neurologischen Erholung nach experimenteller SAB. Die Ergebnisse unterstützen die Hypothese, dass die MLCK einer der Endpunkteffektor für verschiedene Mechanismen ist, welche die endotheliale Permeabilität sowohl nach SHT als auch nach SAB erhöhen.rnZusammenfassend lässt sich feststellen, dass in beiden zerebralen experimentellen Insulten die MLCK eine wichtige Rolle beim BHS Versagen spielt. Die Daten tragen dazu bei, den zugrundeliegenden Mechanismus der BHS Öffnung, der durch eine Aktivierung der MLCK hervorgerufen werden könnte, besser zu verstehen. Dies könnte zu Entwicklung neuer Medikamente für eine Therapie des zerebralen Hirnödems führen.
Targeting neuronal populations by AAV-mediated gene transfer for studying the endocannabinoid system
Resumo:
The cannabinoid type 1 (CB1) receptor is involved in a plethora of physiological functions and heterogeneously expressed on different neuronal populations. Several conditional loss-of-function studies revealed distinct effects of CB1 receptor signaling on glutamatergic and GABAergic neurons, respectively. To gain a comprehensive picture of CB1 receptor-mediated effects, the present study aimed at developing a gain-of-function approach, which complements conditional loss-of-function studies. Therefore, adeno-associated virus (AAV)-mediated gene delivery and Cre-mediated recombination were combined to recreate an innovative method, which ensures region- and cell type-specific transgene expression in the brain. This method was used to overexpress the CB1 receptor in glutamatergic pyramidal neurons of the mouse hippocampus. Enhanced CB1 receptor activity at glutamatergic terminals caused impairment in hippocampus-dependent memory performance. On the other hand, elevated CB1 receptor levels provoked an increased protection against kainic acid-induced seizures and against excitotoxic neuronal cell death. This finding indicates the protective role of CB1 receptor on hippocampal glutamatergic terminals as a molecular stout guard in controlling excessive neuronal network activity. Hence, CB1 receptor on glutamatergic hippocampal neurons may represent a target for novel agents to restrain excitotoxic events and to treat neurodegenerative diseases. Endocannabinoid synthesizing and degrading enzymes tightly regulate endocannabinoid signaling, and thus, represent a promising therapeutic target. To further elucidate the precise function of the 2-AG degrading enzyme monoacylglycerol lipase (MAGL), MAGL was overexpressed specifically in hippocampal pyramidal neurons. This genetic modification resulted in highly increased MAGL activity accompanied by a 50 % decrease in 2-AG levels without affecting the content of arachidonic acid and anandamide. Elevated MAGL protein levels at glutamatergic terminals eliminated depolarization-induced suppression of excitation (DSE), while depolarization-induced suppression of inhibition (DSI) was unchanged. This result indicates that the on-demand availability of the endocannabinoid 2-AG is crucial for short-term plasticity at glutamatergic synapses in the hippocampus. Mice overexpressing MAGL exhibited elevated corticosterone levels under basal conditions and an increase in anxiety-like behavior, but surprisingly, showed no changes in aversive memory formation and in seizure susceptibility. This finding suggests that 2 AG-mediated hippocampal DSE is essential for adapting to aversive situations, but is not required to form aversive memory and to protect against kainic acid-induced seizures. Thus, specific inhibition of MAGL expressed in hippocampal pyramidal neurons may represent a potential treatment strategy for anxiety and stress disorders. Finally, the method of AAV-mediated cell type-specific transgene expression was advanced to allow drug-inducible and reversible transgene expression. Therefore, elements of the tetracycline-controlled gene expression system were incorporated in our “conditional” AAV vector. This approach showed that transgene expression is switched on after drug application and that background activity in the uninduced state was only detectable in scattered cells of the hippocampus. Thus, this AAV vector will proof useful for future research applications and gene therapy approaches.
Resumo:
Bei der Parkinsonschen Krankheit kommt es zu einer selektiven Degeneration der dopaminergen Neurone in der Substantia nigra pars compacta. Die Rolle des oxidativen Stresses in der Pathogenese dieser Erkrankung konnte an post mortem Untersuchungen der Parkinson-Patienten, wie auch an zahlreichen in vitro und in vivo Modellen bestätigt werden. Die Anwendung von Antioxidantien wurde als therapeutische Strategie der Parkinsonschen Krankheit vorgeschlagen. In dieser Hinsicht wurden bereits antioxidative Substanzen in klinischen Studien evaluiert. Klinische Studien mit Antioxidantien haben jedoch bislang nur wenig überzeugende Ergebnisse erbracht, mit Ausnahme des Einsatzes des Ubichinons (Coenzym Q). Eine kritische Analyse der klinischen Studien lässt zusammenfassen, dass auf Seiten der verwendeten Antioxidantien noch massiver Optimierungsbedarf besteht. Für einen erfolgreichen therapeutischen Einsatz von Antioxidantien bei dieser Krankheit sind folgende Eigenschaften der Substanzen von höchster Bedeutung: i) maximale neuroprotektive Aktivität bei geringen Dosen; ii) geringe Nebenwirkungen; iii) eine hohe Blut-Hirn-Schrankengängigkeit.In dieser Arbeit wurde das neuroprotektive Potential von drei Bisarylimin-basierten antioxidativen Strukturen (Phenothiazin, Iminostilben und Phenoxazin) in in vitro und in vivo Parkinson-Modellsystemen evaluiert. Beide experimentellen Modelle basieren auf der Wirkung der mitochondrialen Komplex I Inhibitoren 1-Methyl-4-Phenylpyridin (MPP+) und Rotenon, welche pathophysiologische Charakteristika der Parkinsonschen Krankheit reproduzieren. Unsere in vitro Untersuchungen an primären Neuronen des Mittelhirns und der klonalen SH-SY5Y-Neuroblastomazelllinie konnten zeigen, dass die Komplex I Inhibition krankheitsspezifische zelluläre Merkmale induziert, wie die Abnahme der antioxidativen Verteidigungskapazität und Verlust des mitochondrialen Membranpotentials. Zusätzlich kommt es in primären Neuronen des Mittelhirns zur selektiven Degeneration dopaminerger Neurone, welche in der Parkinsonschen Erkrankung besonders betroffen sind. Ko-Inkubation der in vitro Modelle mit Phenothiazin, Iminostilben und Phenoxazin in niedrigen Konzentrationen (50 nM) halten die pathologischen Prozesse fast vollständig auf. In vivo Untersuchungen am MPP+- und Rotenon-basierten Caenorhabditis elegans (C. elegans) Modell bestätigen das neuroprotektive Potential der Bisarylimine. Hierfür wurde eine transgene C. elegans Linie mithilfe einer dopaminerg spezifischen DsRed2- (Variante des rot fluoreszierenden Proteins von Discosoma sp.)-Expression und pan-neuronaler CFP- (cyan fluoreszierendes Protein)-Expression zur Visualisierung der dopaminergen Neuronenpopulation in Kontrast zum Gesamtnervensystem erstellt. Behandlung des C. elegans mit MPP+ und Rotenon im larvalen und adulten Stadium führt zu einer selektiven Degeneration dopaminerger Neurone, sowie zum Entwicklungsarrest der larvalen Population. Die dopaminerge Neurodegeneration, wie auch weitere phänotypische Merkmale des C. elegans Modells, können durch Phenothiazin, Iminostilben und Phenoxazin in niedrigen Konzentrationen (500 nM) komplett verhindert werden. Ein systemischer Vergleich aromatischer Bisarylimine mit bekannten, gut charakterisierten Antioxidantien, wie α-Tocopherol (Vitamin E), Epigallocatechingallat und β-Catechin, zeigt, dass effektive Konzentrationen für Phenothiazin, Iminostilben und Phenoxazin um Zehnerpotenzen niedriger liegen im Vergleich zu natürlichen Antioxidantien. Der Wirkungsmechanismus der Bisarylimine konnte in biochemischen und in vitro Analysen, sowie in Verhaltensuntersuchungen an C. elegans von der Wirkungsweise strukturell ähnlicher, neuroleptisch wirkender Phenothiazin-Derivate differenziert werden. Die Analyse des dopaminerg-gesteuerten Verhaltens (Beweglichkeit) in C. elegans konnte verdeutlichen, dass antioxidative und Dopaminrezeptor-bindende Eigenschaften der Bisaryliminstrukturen sich gegenseitig ausschließen. Diese qualitativen Merkmale unterscheiden Bisarylimine fundamental von klinisch angewandten Neuroleptika (Phenothiazin-Derivate), welche als Dopaminrezeptor-Antagonisten zur Behandlung psychischer Erkrankungen klinisch eingesetzt werden.Aromatische Bisarylimine (Phenothiazin, Iminostilben und Phenoxazin) besitzen günstige strukturelle Eigenschaften zur antioxidativ-basierter Neuroprotektion. Durch die Anwesenheit der antioxidativ wirkenden, nicht-substituierten Iminogruppe unterscheiden sich Bisarylimine grundlegend von neuroleptisch-wirkenden Phenothiazin-Derivaten. Wichtige strukturelle Voraussetzungen eines erfolgreichen antioxidativen Neuropharmakons, wie eine hohe Radikalisierbarkeit, die stabile Radikalform und der lipophile Charakter des aromatischen Ringsystems, werden in der Bisaryliminstruktur erfüllt. Antioxidative Bisarylimine könnten in der Therapie der Parkinsonschen Krankheit als eine effektive neuroprotektiv-therapeutische Strategie weiter entwickelt werden.
Resumo:
Stress in der Post-Akquisitionsphase begünstigt die Gedächtniskonsolidierung emotional erregender Informationen. Das Zusammenspiel von noradrenerger Aktivierung und Cortisol auf Ebene der Amygdala ist hierbei von entscheidender Bedeutung. rnIn dieser Studie wird untersucht, ob dieser Effekt durch das Ausmaß der kardiovaskulären bzw. der subjektiv erlebten Stressreaktivität beeinflusst wird. 49 Probanden (Alter: 23.8 Jahre; 32 Frauen) wurden je 52 Gesichter, davon 50% mit ärgerlichem sowie 50 % mit glücklichem Ausdruck präsentiert. Sofort nach Akquisition wurde bei 30 Probanden akuter Stress durch den sozial evaluierten Kaltwassertest (SECPT; Eintauchen der dominanten Hand in eiskaltes Wasser für 3 Minuten unter Beobachtung) induziert, bei 19 Probanden wurde eine Kontrollprozedur ohne Stress durchgeführt. Die 30 Probanden der SECPT-Gruppe wurden post-hoc zum einen anhand der individuellen Blutdruckreaktivität und zum zweiten anhand der Stärke der subjektiv bewerteten Stressreaktivität per Mediansplit in zwei Subgrupen unterteilt (High Responder, Low Responder). rnDer erste Wiedererkennungstest fand 30 Minuten nach der Akquisitionsphase, ein weiterer 20 Stunden später statt. Zu den Testzeitpunkten wurden jeweils 26 der initial präsentierten Gesichter mit neutralem Gesichtsausdruck gezeigt sowie 26 neue neutrale Gesichter. rnDie Kontrollgruppe und die Gruppe der High Responder (basierend auf der kardiovaskulären Reaktivität) zeigten ein besseres Erinnerungsvermögen für die initial positiv präsentierten gesichter, wohingegen die Gruppe der Low Responder ein besseres Gedächtnis für die initial negativ präsentierten Gesichter aufwies. rnStress scheint abhängig von der Stärke der kardiovaskulären Reaktion zu valenzspezifischen Konsolidierungseffekten zu führen. Hierbei könnten viszerale Afferenzen z.B. der arteriellen Baroreflexe eine Rolle spielen. rn