2 resultados para Sterry, Paul: Birds of the Mediterranean : a photographic guide
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Global observations of the chemical composition of the atmosphere are essential for understanding and studying the present and future state of the earth's atmosphere. However, by analyzing field experiments the consideration of the atmospheric motion is indispensable, because transport enables different chemical species, with different local natural and anthropogenic sources, to interact chemically and so consequently influences the chemical composition of the atmosphere. The distance over which that transport occurs is highly dependent upon meteorological conditions (e.g., wind speed, precipitation) and the properties of chemical species itself (e.g., solubility, reactivity). This interaction between chemistry and dynamics makes the study of atmospheric chemistry both difficult and challenging, and also demonstrates the relevance of including the atmospheric motions in that context. In this doctoral thesis the large-scale transport of air over the eastern Mediterranean region during summer 2001, with a focus on August during the Mediterranean Intensive Oxidant Study (MINOS) measurement campaign, was investigated from a lagrangian perspective. Analysis of back trajectories demonstrated transport of polluted air masses from western and eastern Europe in the boundary layer, from the North Atlantic/North American area in the middle end upper troposphere and additionally from South Asia in the upper troposphere towards the eastern Mediterranean. Investigation of air mass transport near the tropopause indicated enhanced cross-tropopause transport relative to the surrounding area over the eastern Mediterranean region in summer. A large band of air mass transport across the dynamical tropopause develops in June, and is shifted toward higher latitudes in July and August. This shifting is associated with the development and the intensification of the Arabian and South Asian upper-level anticyclones and consequential with areas of maximum clear-air turbulence, hypothesizing quasi-permanent areas with turbulent mixing of tropospheric and stratospheric air during summer over the eastern Mediterranean as a result of large-scale synoptic circulation. In context with the latex knowledge about the transport of polluted air masses towards the Mediterranean and with increasing emissions, especially in developing countries like India, this likely gains in importance.
Resumo:
In the present study of sponge-bacterial association, the presence of a marine bacterium which has not seen to be associated previously with the Mediterranean sponge Suberites domuncula was investigated. The marine sponge S. domuncula was chosen as the subject of investigation, for the identification of potential symbiotic microorganisms, since it can be kept under controlled laboratory conditions for over five years. By the use of specialized media assisting in the growth of a metal oxidizing bacterium, the manganese oxidizing bacterium was isolated from the surface of the marine sponge. The bacterium so isolated was characterized for its growth characteristics by microbiological and biochemical techniques, a detailed analysis of which showed that the bacterium followed a life cycle where the culture showed the presence of spore forming bacteria. This was correlated to the manganese oxidation activity of the bacteria and it was found that both stages are interdependent.The action of the protein responsible for carrying out the manganese (Mn) oxidation was studied by an in-gel oxidation assay, and the presence of a multi copper oxidase was confirmed by the use of copper chelators in the buffer. In parallel the effect of addition of copper was observed on the manganese oxidation by the bacteria thus supporting the observations. The manganese oxidation reaction by the bacteria was determined in the culture medium and on the surface of the cells, and it could be concluded that the oxidation was facilitated by the presence of the polysaccharides and proteins on the surface of the cells.Thus the presence of a bacterium capable of oxidizing the manganese from the surroundings was confirmed to be symbiotically associated with the marine sponge S. domuncula by monitoring its growth in axenic cultures. The reasons behind this association were studied.This bacterium displays a crucial role in the physiology/metabolism of the sponge by acting as a reversible Mn store in S. domuncula. According to this view, the presence of SubDo-03 bacteria is required as a protection against higher, toxic concentrations of Mn in the environment; manganese (II) after undergoing oxidation to manganese (IV), becomes an insoluble ion. Since only minute levels of manganese exist in the surrounding seawater a substantial accumulation of manganese has to arise, or a release by the bacterial-precipitated manganese (IV) is implicated to maintain the reversible balance. The other possible benefits provided by the bacterial association to the sponge could be in preventing cellular oxygen toxicity, help in nutrient scavenging and detoxification.