2 resultados para Single-crystal semiconductors

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ausgehend von der Entdeckung der reversiblen Strukturierung mittels Rastersondenmethoden im Phasensystem Na2O/V2O5/P2O5 wurden im Rahmen dieser Arbeit zwei Ansatzpunkte verfolgt. Einerseits sollten mittels der Schmelzflußelektrolyse einige bereits existierende niederdimensionale Molybdänbronzen mit bekannten elektronischen Übergängen in ausreichend großen Kristallen gezüchtet werden, um sie auf ihre Strukturierungseigenschaften hin zu untersuchen. Gleichzeitig sollte durch Variation versucht werden, neue, bisher unbekannte Bronzen oder reduzierte Oxide zu synthetisieren und charakterisieren. Der zweite Schwerpunkt dieser Arbeit lag in der Synthese und Charakterisierung von Oxidchalkogeniden, bestehend aus einem Seltenerdmetall und einem 3d-Metall von Titan bis hin zu den mittleren Übergangsmetallen. Diese Verbindungen können durch die Kombination der jeweiligen Eigenschaften der oxidischen und chalkogeniden Teilstrukturen völlig neue elektronische und/oder magnetische Eigenschaften aufweisen. Mögliche auftretende Phasenübergänge sind wiederum für Strukturierungsversuche interessant. Die zu den Oxidchalkogeniden durchgeführten Untersuchungen ergaben im Phasensystem Ln/Ti/S/O (Ln = Lanthanoide) insgesamt sechs Verbindungen. Zwei von ihnen, La8Ti9S24O4 und Nd20Ti11S44O6, besitzen als gemeinsames Strukturelement tetranukleare [Ti4(u4-S)2(u2-O)4]-Cluster, bestehend aus vier miteinander über gemeinsame Flächen kondensierte TiS4O2-Oktaeder. Die Titanpositionen innerhalb der Cluster sind mit Ti+3-Ionen besetzt. Beide Verbindungen weisen in einem Temperaturbereich zwischen 150 K und 250 K eine deutlich ausgeprägte Hysterese der magnetischen Suszeptibilität auf, die sich im Falle von La8Ti9S24O4 auf einen Jahn-Teller-Übergang zurückführen läßt. Daneben konnte erstmals eine Serie oxidisch/sulfidisch gemischter Ruddlesden-Popper-Verbindungen mit Ln2Ti2S2O5 (Ln = Pr, Nd, Sm) synthetisiert und charakterisiert werden. Titan liegt als vierwertiges Ion in aus TiSO5-Oktaedern gebildeten Perowskit-Doppelschichten vor. Die neunfach koordinierten Positionen sind mit den Seltenerdmetallionen gefüllt, die zwölffach koordinierten Lagen sind unbesetzt. Bei dem sechsten erhaltene Titanoxidsulfid, La4TiS6.5O1.5, handelt es sich um einen Halbleiter mit einer Bandlücke von etwa 2 eV. Weiterhin gelang es, die Serie Ln2M3S2O8 (Ln = La, Ce, Pr, Nd, Sm; M = Nb, Ta) zu synthetisieren und in ihren physikalischen Eigenschaften zu charakterisieren. Es handelt sich ausnahmslos um Halbleiter mit Bandlücken zwischen E=0.125 eV für La2Nb3S2O8 und E=0.222 eV für Pr2Ta3S2O8. Die Struktur der Oxidsulfide Ce2Ta3S2O8, Pr2Ta3S2O8, Nd2Nb3S2O8 sowie Sm2Ta3S2O8 weist im Gegensatz zu den anderen Verbindungen eine Fehlordnung eines der beiden kristallographisch unabhängigen Nb- bzw. Ta-Atome auf. Daraus resultiert eine Symmetrieerniedrigung von Pnma zu Pbam. Der Einsatz von Europium führte zu einer neuen Modifikation des bronzoiden Oxids EuTa2O6, in der das Europium als Eu+2 vorliegt, wie 151Eu-Mößbauer-Untersuchungen bestätigten. Vor der Durchführung der Kristallzüchtungen mittels der Schmelzflußelektrolysen mußten die benutzen Öfen und Elektrolysezellen geplant und angefertigt werden. Es konnten dann verschiedene blaue, rote und violette Moybdänbronzen (sowie La2Mo2O7) in Kristallen bis zu 25 mm Länge dargestellt werden. Ferner gelang die erste exakte Einkristalluntersuchung der roten Bronze Rb0.33MoO3. Sie verfügt über die höchste d-Elektronen-Lokalisierungsrate aller bekannten roten Bronzen. Die erhaltenen Bronzen wurden teilweise von der Arbeitsgruppe Fuchs, Physikalisches Institut der Westfälischen Wilhelms-Universität Münster, auf ihre Nanostrukturierbarkeit hin untersucht. Dabei ergaben sich zwei verschiedene Strukturierungsmechanismen. Sind es im Fall der blauen Alkalimetall-Molybdänbronzen ausschließlich Lochstrukturen, die entstehen, handelt es sich bei La2Mo2O7 um Hügelstrukturen. Mittels der Schmelzflußelektrolyse konnte auch das gemischtvalente Alkalimetall-Eisenmolybdat NaFe2(MoO4)3 synthetisiert werden. Daneben gelang die Synthese dreier weiterer Alkalimetall-Eisenmolybdate: Cs2Fe2(MoO4)3, NaFe4(MoO4)5 und CsFe5(MoO4)7. Bis auf Cs2Fe2(MoO4)3, welches in der bekannten Langbeinit-Struktur kristallisiert, handelt es sich bei den übrigen Alkalimetall-Eisenmolybdaten um völlig neuartige Käfigverbindungen, bzw. bei CsFe5(MoO4)7 um eine Tunnelverbindung. Die Kristallstrukturen beinhalten kondensierte FeO6-Oktaeder. Im Fall von NaFe2(MoO4)3 lassen sich [Fe2O10]-Einheiten, für NaFe4(MoO4)5 [Fe2O10]- sowie [Fe3O14]-Einheiten, und für CsFe5(MoO4)7 [Fe4O18]-Baueinheiten beobachten. Die Positionen der Fe+2- und Fe+3-Atome in NaFe4(MoO4)5 wurden mit Hilfe einer 57Fe-Mößbauer-Untersuchung bestimmt.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Während der letzten Jahre wurde für Spinfilter-Detektoren ein wesentlicher Schritt in Richtung stark erhöhter Effizienz vollzogen. Das ist eine wichtige Voraussetzung für spinaufgelöste Messungen mit Hilfe von modernen Elektronensp ektrometern und Impulsmikroskopen. In dieser Doktorarbeit wurden bisherige Arbeiten der parallel abbildenden Technik weiterentwickelt, die darauf beruht, dass ein elektronenoptisches Bild unter Ausnutzung der k-parallel Erhaltung in der Niedrigenergie-Elektronenbeugung auch nach einer Reflektion an einer kristallinen Oberfläche erhalten bleibt. Frühere Messungen basierend auf der spekularen Reflexion an einerrnW(001) Oberfläche [Kolbe et al., 2011; Tusche et al., 2011] wurden auf einenrnviel größeren Parameterbereich erweitert und mit Ir(001) wurde ein neues System untersucht, welches eine sehr viel längere Lebensdauer der gereinigten Kristalloberfläche im UHV aufweist. Die Streuenergie- und Einfallswinkel-“Landschaft” der Spinempfindlichkeit S und der Reflektivität I/I0 von gestreuten Elektronen wurde im Bereich von 13.7 - 36.7 eV Streuenergie und 30◦ - 60◦ Streuwinkel gemessen. Die dazu neu aufgebaute Messanordnung umfasst eine spinpolarisierte GaAs Elektronenquellernund einen drehbaren Elektronendetektor (Delayline Detektor) zur ortsauflösenden Detektion der gestreuten Elektronen. Die Ergebnisse zeigen mehrere Regionen mit hoher Asymmetrie und großem Gütefaktor (figure of merit FoM), definiert als S2 · I/I0. Diese Regionen eröffnen einen Weg für eine deutliche Verbesserung der Vielkanal-Spinfiltertechnik für die Elektronenspektroskopie und Impulsmikroskopie. Im praktischen Einsatz erwies sich die Ir(001)-Einkristalloberfläche in Bezug auf längere Lebensdauer im UHV (ca. 1 Messtag), verbunden mit hoher FOM als sehr vielversprechend. Der Ir(001)-Detektor wurde in Verbindung mit einem Halbkugelanalysator bei einem zeitaufgelösten Experiment im Femtosekunden-Bereich am Freie-Elektronen-Laser FLASH bei DESY eingesetzt. Als gute Arbeitspunkte erwiesen sich 45◦ Streuwinkel und 39 eV Streuenergie, mit einer nutzbaren Energiebreite von 5 eV, sowie 10 eV Streuenergie mit einem schmaleren Profil von < 1 eV aber etwa 10× größerer Gütefunktion. Die Spinasymmetrie erreicht Werte bis 70 %, was den Einfluss von apparativen Asymmetrien deutlich reduziert. Die resultierende Messungen und Energie-Winkel-Landschaft zeigt recht gute Übereinstimmung mit der Theorie (relativistic layer-KKR SPLEED code [Braun et al., 2013; Feder et al.,rn2012])