2 resultados para Single overhead rate

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A sample scanning confocal optical microscope (SCOM) was designed and constructed in order to perform local measurements of fluorescence, light scattering and Raman scattering. This instrument allows to measure time resolved fluorescence, Raman scattering and light scattering from the same diffraction limited spot. Fluorescence from single molecules and light scattering from metallic nanoparticles can be studied. First, the electric field distribution in the focus of the SCOM was modelled. This enables the design of illumination modes for different purposes, such as the determination of the three-dimensional orientation of single chromophores. Second, a method for the calculation of the de-excitation rates of a chromophore was presented. This permits to compare different detection schemes and experimental geometries in order to optimize the collection of fluorescence photons. Both methods were combined to calculate the SCOM fluorescence signal of a chromophore in a general layered system. The fluorescence excitation and emission of single molecules through a thin gold film was investigated experimentally and modelled. It was demonstrated that, due to the mediation of surface plasmons, single molecule fluorescence near a thin gold film can be excited and detected with an epi-illumination scheme through the film. Single molecule fluorescence as close as 15nm to the gold film was studied in this manner. The fluorescence dynamics (fluorescence blinking and excited state lifetime) of single molecules was studied in the presence and in the absence of a nearby gold film in order to investigate the influence of the metal on the electronic transition rates. The trace-histogram and the autocorrelation methods for the analysis of single molecule fluorescence blinking were presented and compared via the analysis of Monte-Carlo simulated data. The nearby gold influences the total decay rate in agreement to theory. The gold presence produced no influence on the ISC rate from the excited state to the triplet but increased by a factor of 2 the transition rate from the triplet to the singlet ground state. The photoluminescence blinking of Zn0.42Cd0.58Se QDs on glass and ITO substrates was investigated experimentally as a function of the excitation power (P) and modelled via Monte-Carlo simulations. At low P, it was observed that the probability of a certain on- or off-time follows a negative power-law with exponent near to 1.6. As P increased, the on-time fraction reduced on both substrates whereas the off-times did not change. A weak residual memory effect between consecutive on-times and consecutive off-times was observed but not between an on-time and the adjacent off-time. All of this suggests the presence of two independent mechanisms governing the lifetimes of the on- and off-states. The simulated data showed Poisson-distributed off- and on-intensities, demonstrating that the observed non-Poissonian on-intensity distribution of the QDs is not a product of the underlying power-law probability and that the blinking of QDs occurs between a non-emitting off-state and a distribution of emitting on-states with different intensities. All the experimentally observed photo-induced effects could be accounted for by introducing a characteristic lifetime tPI of the on-state in the simulations. The QDs on glass presented a tPI proportional to P-1 suggesting the presence of a one-photon process. Light scattering images and spectra of colloidal and C-shaped gold nano-particles were acquired. The minimum size of a metallic scatterer detectable with the SCOM lies around 20 nm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Future experiments in nuclear and particle physics are moving towards the high luminosity regime in order to access rare processes. In this framework, particle detectors require high rate capability together with excellent timing resolution for precise event reconstruction. In order to achieve this, the development of dedicated FrontEnd Electronics (FEE) for detectors has become increasingly challenging and expensive. Thus, a current trend in R&D is towards flexible FEE that can be easily adapted to a great variety of detectors, without impairing the required high performance. This thesis reports on a novel FEE for two different detector types: imaging Cherenkov counters and plastic scintillator arrays. The former requires high sensitivity and precision for detection of single photon signals, while the latter is characterized by slower and larger signals typical of scintillation processes. The FEE design was developed using high-bandwidth preamplifiers and fast discriminators which provide Time-over-Threshold (ToT). The use of discriminators allowed for low power consumption, minimal dead-times and self-triggering capabilities, all fundamental aspects for high rate applications. The output signals of the FEE are readout by a high precision TDC system based on FPGA. The performed full characterization of the analogue signals under realistic conditions proved that the ToT information can be used in a novel way for charge measurements or walk corrections, thus improving the obtainable timing resolution. Detailed laboratory investigations proved the feasibility of the ToT method. The full readout chain was investigated in test experiments at the Mainz Microtron: high counting rates per channel of several MHz were achieved, and a timing resolution of better than 100 ps after walk correction based on ToT was obtained. Ongoing applications to fast Time-of-Flight counters and future developments of FEE have been also recently investigated.