2 resultados para Side-sensitive
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Mit Hilfe von Brennstoffzellen wird eine effiziente Energieumwandlung von chemischer in elektrische Energie möglich. Die kommerziellen PEM-Brennstoffzellen benutzen Membra-nen, die zum Erreichen hoher Leitfähigkeiten eine wässrige Phase erfordern, in der der Proto-nentransport stattfindet. Somit wird die Betriebstemperatur durch den Siedepunkt des Wassers limitiert. Die verwendeten Pt-Katalysatoren zeigen bei niedrigen Temperaturen eine höhere Empfindlichkeit gegenüber CO, dass im Reformierungsprozess bei der Erzeugung von Was-serstoff entsteht. Austausch der wässrigen Phase gegen Heterozyklen, die ein zu Wasser ver-gleichbares Wasserstoffbrückennetzwerk aufbauen, in dem der Protonentransport stattfinden kann, ermöglicht eine höhere Betriebstemperatur. Durch das im Laufe des Brennstoffzellen-betriebs gebildete Wasser, können die Heterozyklen verdünnt bzw. komplett aus der Memb-ran ausgewaschen werden. Daher ist es erforderlich, die Ladungsträger an ein Polymerrück-grat zu binden, so dass sie eine hohe Beweglichkeit und Konzentration, die denen in der flüs-sigen Phase einer konventionellen Membran entsprechen, aufweisen. Diese Arbeit beschreibt die Synthese und Charakterisierung von Protonenleitern, die ohne eine flüssige Phase auskommen, da sie bereits protonische Leitfähigkeit als intrinsische Ei-genschaft zeigen. Es wurden verschiedene imidazol- bzw. benzimidazolhaltige Dimere und Polythiophene, in denen Benzimidazol in der Seitenkette über verschieden flexible Spacer mit dem Polymerrückgrat verbunden ist, synthetisiert. Die Materialien wurden in undotierten Zu-stand und nach Dotierung mit geringen Mengen Phosphorsäure umfassend charakterisiert und auf thermisches Verhalten, Stabilität und Leitfähigkeit untersucht. Die benzimidazolhaltigen Dimere weisen mit 250 °C die höchsten Zersetzungstemperaturen auf. Mit zunehmender Temperatur kann in allen Fällen eine Erhöhung der Leitfähigkeit beobachtet werden, die sich in der Arrhenius-Auftragung durch eine Gerade anpassen lässt, somit kann der Protonentrans-port durch einen Protonen-hüpfmechanismus beschrieben werden. Die höchste beobachtete Leitfähigkeit liegt im Bereich von 10-6 S/cm bei 160 °C. Durch Zusatz von Phosphorsäure kann die Leitfähigkeit z.T. um einige Größenordnungen gesteigert werden. Eine Ausnahme bilden die Polythiophene, die sowohl protonische als auch elektronische Leitfähigkeit besit-zen. Hier führt die Säure zu einer Lokalisierung der Ladungsträger, so dass die elektronische Leitfähigkeit eingeschränkt wird.
Resumo:
Im Rahmen dieser Arbeit wurde die zeitaufgelöste Photoemissions Elektronenmikroskopie (TR-PEEM) für die in-situ Untersuchung ultraschneller dynamischer Prozesse in dünnen mikrostrukturierten magnetischen Schichten während eines rasch verändernden externen Magnetfelds entwickelt. Das Experiment basiert auf der Nutzung des XMCD-Kontrasts (X-ray magnetic circular dichroism) mit Hilfe des zirkularpolarisierten Lichts von Synchrotronstrahlungsquellen (Elektronenspeicherringen BESSY II (Berlin) und ESRF (Grenoble)) für die dynamische Darstellung der magnetischen Domänen während ultraschneller Magnetisierungsvorgänge. Die hier entwickelte Methode wurde als erfolgreiche Kombination aus einer hohen Orts- und Zeitauflösung (weniger als 55 nm bzw. 15 ps) realisiert. Mit der hier beschriebenen Methode konnte nachgewiesen werden, dass die Magnetisierungsdynamik in großen Permalloy-Mikrostrukturen (40 µm x 80 µm und 20 µm x 80 µm, 40 nm dick) durch inkohärente Drehung der Magnetisierung und mit der Bildung von zeitlich abhängigen Übergangsdomänen einher geht, die den Ummagnetisierungsvorgang blockieren. Es wurden neue markante Differenzen zwischen der magnetischen Response einer vorgegebenen Dünnfilm-Mikrostruktur auf ein gepulstes externes Magnetfeld im Vergleich zu dem quasi-statischen Fall gefunden. Dies betrifft die Erscheinung von transienten raumzeitlichen Domänenmustern und besonderen Detailstrukturen in diesen Mustern, welche im quasi-statischen Fall nicht auftreten. Es wurden Beispiele solcher Domänenmuster in Permalloy-Mikrostrukturen verschiedener Formen und Größen untersucht und diskutiert. Insbesondere wurde die schnelle Verbreiterung von Domänenwänden infolge des präzessionalen Magnetisierungsvorgangs, die Ausbildung von transienten Domänenwänden und transienten Vortizes sowie die Erscheinung einer gestreiften Domänenphase aufgrund der inkohärenten Drehung der Magnetisierung diskutiert. Ferner wurde die Methode für die Untersuchung von stehenden Spinwellen auf ultradünnen (16 µm x 32 µm groß und 10 nm dick) Permalloy-Mikrostrukturen herangezogen. In einer zum periodischen Anregungsfeld senkrecht orientierten rechteckigen Mikrostruktur wurde ein induziertes magnetisches Moment gefunden. Dieses Phänomen wurde als „selbstfangende“ Spinwellenmode interpretiert. Es wurde gezeigt, dass sich eine erzwungene Normalmode durch Verschiebung einer 180°-Néelwand stabilisiert. Wird das System knapp unterhalb seiner Resonanzfrequenz angeregt, passt sich die Magnetisierungsverteilung derart an, dass ein möglichst großer Teil der durch das Anregungsfeld eingebrachten Energie im System verbleibt. Über einem bestimmten Grenzwert verursacht die Spinwellenmode nahe der Resonanzfrequenz eine effektive Kraft senkrecht zur 180°-Néel-Wand. Diese entsteht im Zentrum der Mikrostruktur und wird durch die streufeldinduzierte Kraft kompensiert. Als zusätzliche Möglichkeit wurden die Streufelder von magnetischen Mikrostrukturen während der dynamischen Prozesse quantitativ bestimmt und das genaue zeitliche Profil des Streufelds untersucht. Es wurde gezeigt, dass das zeitaufgelöste Photoemissions Elektronenmikroskop als ultraschnelles oberflächensensitives Magnetometer eingesetzt werden kann.