3 resultados para Shoot apical meristems.
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Kolumnare Apfelbäume (Malus x domestica) stellen aufgrund ihres auffälligen Phänotyps eine ökonomisch interessante Wuchsform dar. Diese extreme Form des Kurztriebwuchses zeichnet sich durch einen insgesamt sehr schlanken, säulenförmigen Habitus aus, welcher eine dichte Pflanzung und damit einhergehend Ertragssteigerungen im Vergleich zu normalwüchsigen Bäumen ermöglicht. Verursacht wird der Phänotyp durch die Anwesenheit eines einzelnen, dominanten Allels des Columnar (Co)-Gens. Bis auf die approximative Lokalisation des Gens auf Chromosom 10 ist über mögliche Identität und Funktion bislang nichts bekannt.rnIn der vorliegenden Arbeit wurde ein erster Versuch unternommen, mit Hilfe von Next Generation Sequencing (NGS) Technologien und RNA-Seq Einblicke in das Transkriptom des Sprossapikalmeristems (SAM) kolumnarer Apfelbäume zu gewinnen. So konnte gezeigt werden, dass unabhängig vom Zeitpunkt der Entnahme des Materials mehrere hundert Gene differentiell reguliert werden. Diese lassen sich funktional in mehrere überrepräsentierte Kategorien gruppieren, von denen sich einige wiederum mit dem kolumnaren Phänotyp assoziieren lassen. Durch den Einsatz weiterer Expressionsstudien (Microarrays, qRT-PCR) konnten frühere Ergebnisse bezüglich des Hormonhaushalts auf Genebene bestätigt und neue Erkenntnisse gewonnen werden, die eine mögliche Erklärung für den Phänotyp darstellen. Weiterhin ergab der Vergleich aller durchgeführten Expressionsstudien eine Anreicherung signifikant differentiell regulierter Gene auf Chromosom 10, was auf einen „selective sweep“ hindeutet. Eine potentielle epigenetische Regulation dieser Gene durch das Genprodukt von Co könnte daher möglich sein. Mehr als die Hälfte dieser Gene lassen sich darüber hinaus aufgrund ihrer Funktion direkt mit dem kolumnaren Phänotyp assoziieren.rnDiese Ergebnisse zeigen, dass die Anwesenheit des Co-Allels massive Veränderungen in der Genregulation des SAMs mit sich bringt, wobei einige dieser differentiell regulierten Gene mit großer Wahrscheinlichkeit an der Etablierung des kolumnaren Phänotyps beteiligt sind. Auch wenn die Funktion des Co-Genproduktes nicht abschließend geklärt werden konnte, sind doch anhand der Resultate schlüssige Hypothesen diesbezüglich möglich.rn
Resumo:
This thesis presents a comparative developmental study of inflorescences and focuses on the production of the terminal flower (TF). Morphometric attributes of inflorescence meristems (IM) were obtained throughout the ontogeny of inflorescence buds with the aim of describing possible spatial constraints that could explain the failure in developing the TF. The study exposes the inflorescence ontogeny of 20 species from five families of the Eudicots (Berberidaceae, Papaveraceae-Fumarioideae, Rosaceae, Campanulaceae and Apiaceae) in which 745 buds of open (i.e. without TF) and closed (i.e. with TF) inflorescences were observed under the scanning electron microscope.rnThe study shows that TFs appear on IMs which are 2,75 (se = 0,38) times larger than the youngest lateral reproductive primordium. The shape of these IMs is characterized by a leaf arc (phyllotactic attribute) of 91,84° (se = 7,32) and a meristematic elevation of 27,93° (se = 5,42). IMs of open inflorescences show a significant lower relative surface, averaging 1,09 (se=0,26) times the youngest primordium size, which suggests their incapacity for producing TFs. The relative lower size of open IMs is either a condition throughout the complete ontogeny (‘open I’) or a result from the drastic reduction of the meristematic surface after flower segregation (‘open II’). rnIt is concluded that a suitable bulge configuration of the IM is a prerequisite for TF formation. Observations in the TF-facultative species Daucus carota support this view, as the absence of the TF in certain umbellets is correlated with a reduction of their IM dimensions. A review of literature regarding histological development of IMs and genetic regulation of inflorescences suggests that in ‘open I’ inflorescences, the histological composition and molecular activity at the tip of the IM could impede the TF differentiation. On the other side, in ‘open II’ inflorescences, the small final IM bulge could represent a spatial constraint that hinders the differentiation of the TF. The existence of two distinct kinds of ontogenies of open inflorescences suggests two ways in which the loss of the TF could have occurred in the course of evolution.rn
Resumo:
As the elastic response of cell membranes to mechanical stimuli plays a key role in various cellular processes, novel biophysical strategies to quantify the elasticity of native membranes under physiological conditions at a nanometer scale are gaining interest. In order to investigate the elastic response of apical membranes, elasticity maps of native membrane sheets, isolated from MDCK II (Madine Darby Canine kidney strain II) epithelial cells, were recorded by local indentation with an Atomic Force Microscope (AFM). To exclude the underlying substrate effect on membrane indentation, a highly ordered gold coated porous array with a pore diameter of 1.2 μm was used to support apical membranes. Overlays of fluorescence and AFM images show that intact apical membrane sheets are attached to poly-D-lysine coated porous substrate. Force indentation measurements reveal an extremely soft elastic membrane response if it is indented at the center of the pore in comparison to a hard repulsion on the adjacent rim used to define the exact contact point. A linear dependency of force versus indentation (-dF/dh) up to 100 nm penetration depth enabled us to define an apparent membrane spring constant (kapp) as the slope of a linear fit with a stiffness value of for native apical membrane in PBS. A correlation between fluorescence intensity and kapp is also reported. Time dependent hysteresis observed with native membranes is explained by a viscoelastic solid model of a spring connected to a Kelvin-Voight solid with a time constant of 0.04 s. No hysteresis was reported with chemically fixated membranes. A combined linear and non linear elastic response is suggested to relate the experimental data of force indentation curves to the elastic modulus and the membrane thickness. Membrane bending is the dominant contributor to linear elastic indentation at low loads, whereas stretching is the dominant contributor for non linear elastic response at higher loads. The membrane elastic response was controlled either by stiffening with chemical fixatives or by softening with F-actin disrupters. Overall, the presented setup is ideally suitable to study the interactions of the apical membrane with the underlying cytoskeleton by means of force indentation elasticity maps combined with fluorescence imaging.