3 resultados para Sensor Platform

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Physicochemical experimental techniques combined with the specificity of a biological recognition system have resulted in a variety of new analytical devices known as biosensors. Biosensors are under intensive development worldwide because they have many potential applications, e.g. in the fields of clinical diagnostics, food analysis, and environmental monitoring. Much effort is spent on the development of highly sensitive sensor platforms to study interactions on the molecular scale. In the first part, this thesis focuses on exploiting the biosensing application of nanoporous gold (NPG) membranes. NPG with randomly distributed nanopores (pore sizes less than 50 nm) will be discussed here. The NPG membrane shows unique plasmonic features, i.e. it supports both propagating and localized surface plasmon resonance modes (p SPR and l-SPR, respectively), both offering sensitive probing of the local refractive index variation on/in NPG. Surface refractive index sensors have an inherent advantage over fluorescence optical biosensors that require a chromophoric group or other luminescence label to transduce the binding event. In the second part, gold/silica composite inverse opals with macroporous structures were investigated with bio- or chemical sensing applications in mind. These samples combined the advantages of a larger available gold surface area with a regular and highly ordered grating structure. The signal of the plasmon was less noisy in these ordered substrate structures compared to the random pore structures of the NPG samples. In the third part of the thesis, surface plasmon resonance (SPR) spectroscopy was applied to probe the protein-protein interaction of the calcium binding protein centrin with the heterotrimeric G-protein transducin on a newly designed sensor platform. SPR spectroscopy was intended to elucidate how the binding of centrin to transducin is regulated towards understanding centrin functions in photoreceptor cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

“Plasmon” is a synonym for collective oscillations of the conduction electrons in a metal nanoparticle (excited by an incoming light wave), which cause strong optical responses like efficient light scattering. The scattering cross-section with respect to the light wavelength depends not only on material, size and shape of the nanoparticle, but also on the refractive index of the embedding medium. For this reason, plasmonic nanoparticles are interesting candidates for sensing applications. Here, two novel setups for rapid spectral investigations of single nanoparticles and different sensing experiments are presented.rnrnPrecisely, the novel setups are based on an optical microscope operated in darkfield modus. For the fast single particle spectroscopy (fastSPS) setup, the entrance pinhole of a coupled spectrometer is replaced by a liquid crystal device (LCD) acting as spatially addressable electronic shutter. This improvement allows the automatic and continuous investigation of several particles in parallel for the first time. The second novel setup (RotPOL) usesrna rotating wedge-shaped polarizer and encodes the full polarization information of each particle within one image, which reveals the symmetry of the particles and their plasmon modes. Both setups are used to observe nanoparticle growth in situ on a single-particle level to extract quantitative data on nanoparticle growth.rnrnUsing the fastSPS setup, I investigate the membrane coating of gold nanorods in aqueous solution and show unequivocally the subsequent detection of protein binding to the membrane. This binding process leads to a spectral shift of the particles resonance due to the higher refractive index of the protein compared to water. Hence, the nanosized addressable sensor platform allows for local analysis of protein interactions with biological membranes as a function of the lateral composition of phase separated membranes.rnrnThe sensitivity on changes in the environmental refractive index depends on the particles’ aspect ratio. On the basis of simulations and experiments, I could present the existence of an optimal aspect ratio range between 3 and 4 for gold nanorods for sensing applications. A further sensitivity increase can only be reached by chemical modifications of the gold nanorods. This can be achieved by synthesizing an additional porous gold cage around the nanorods, resulting in a plasmon sensitivity raise of up to 50 % for those “nanorattles” compared to gold nanorods with the same resonance wavelength. Another possibility isrnto coat the gold nanorods with a thin silver shell. This reduces the single particle’s resonance spectral linewidth about 30 %, which enlarges the resolution of the observable shift. rnrnThis silver coating evokes the interesting effect of reducing the ensemble plasmon linewidth by changing the relation connecting particle shape and plasmon resonance wavelength. This change, I term plasmonic focusing, leads to less variation of resonance wavelengths for the same particle size distribution, which I show experimentally and theoretically.rnrnIn a system of two coupled nanoparticles, the plasmon modes of the transversal and longitudinal axis depend on the refractive index of the environmental solution, but only the latter one is influenced by the interparticle distance. I show that monitoring both modes provides a self-calibrating system, where interparticle distance variations and changes of the environmental refractive index can be determined with high precision.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis investigates metallic nanostructures exhibiting surface plasmon resonance for the amplification of fluorescence signal in sandwich immunoassays. In this approach, an analyte is captured by an antibody immobilized on a plasmonic structure and detected by a subsequently bound fluorophore labeled detection antibody. The highly confined field of surface plasmons originates from collective charge oscillations which are associated with high electromagnetic field enhancements at the metal surface and allow for greatly increased fluorescence signal from the attached fluorophores. This feature allows for improving the signal-to-noise ratio in fluorescence measurements and thus advancing the sensitivity of the sensor platform. In particular, the thesis presents two plasmonic nanostructures that amplify fluorescence signal in devices that rely on epifluorescence geometry, in which the fluorophore absorbs and emits light from the same direction perpendicular to the substrate surface.rnThe first is a crossed relief gold grating that supports propagating surface plasmon polaritons (SPPs) and second, gold nanoparticles embedded in refractive index symmetric environment exhibiting collective localized surface plasmons (cLSPs). Finite-difference time-domain simulations are performed in order to design structures for the optimum amplification of established Cy5 and Alexa Fluor 647 fluorophore labels with the absorption and emission wavelengths in the red region of spectrum. The design takes into account combined effect of surface plasmon-enhanced excitation rate, directional surface plasmon-driven emission and modified quantum yield for characteristic distances in immunoassays. Homebuilt optical instruments are developed for the experimental observation of the surface plasmon mode spectrum, measurements of the angular distribution of surface plasmon-coupled fluorescence light and a setup mimicking commercial fluorescence reading systems in epifluorescence geometry.rnCrossed relief grating structures are prepared by interference lithography and multiple copies are made by UV nanoimprint lithography. The fabricated crossed diffraction gratings were utilized for sandwich immunoassay-based detection of the clinically relevant inflammation marker interleukin 6 (IL-6). The enhancement factor of the crossed grating reached EF=100 when compared to a flat gold substrate. This result is comparable to the highest reported enhancements to date, for fluorophores with relatively high intrinsic quantum yield. The measured enhancement factor excellently agrees with the predictions of the simulations and the mechanisms of the enhancement are explained in detail. Main contributions were the high electric field intensity enhancement (30-fold increase) and the directional fluorescence emission at (4-fold increase) compared to a flat gold substrate.rnCollective localized surface plasmons (cLSPs) hold potential for even stronger fluorescence enhancement of EF=1000, due to higher electric field intensity confinement. cLSPs are established by diffractive coupling of the localized surface plasmon resonance (LSPR) of metallic nanoparticles and result in a narrow resonance. Due to the narrow resonance, it is hard to overlap the cLSPs mode with the absorption and emission bands of the used fluorophore, simultaneously. Therefore, a novel two resonance structure that supports SPP and cLSP modes was proposed. It consists of a 2D array of cylindrical gold nanoparticles above a low refractive index polymer and a silver film. A structure that supports the proposed SPP and cLSP modes was prepared by employing laser interference lithography and the measured mode spectrum was compared to simulation results.rn