8 resultados para Scanning tunnelling microscopy

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conjugated polymers and conjugated polymer blends have attracted great interest due to their potential applications in biosensors and organic electronics. The sub-100 nm morphology of these materials is known to heavily influence their electromechanical properties and the performance of devices they are part of. Electromechanical properties include charge injection, transport, recombination, and trapping, the phase behavior and the mechanical robustness of polymers and blends. Electrical scanning probe microscopy techniques are ideal tools to measure simultaneously electric (conductivity and surface potential) and dielectric (dielectric constant) properties, surface morphology, and mechanical properties of thin films of conjugated polymers and their blends.rnIn this thesis, I first present a combined topography, Kelvin probe force microscopy (KPFM), and scanning conductive torsion mode microscopy (SCTMM) study on a gold/polystyrene model system. This system is a mimic for conjugated polymer blends where conductive domains (gold nanoparticles) are embedded in a non-conductive matrix (polystyrene film), like for polypyrrole:polystyrene sulfonate (PPy:PSS), and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). I controlled the nanoscale morphology of the model by varying the distribution of gold nanoparticles in the polystyrene films. I studied the influence of different morphologies on the surface potential measured by KPFM and on the conductivity measured by SCTMM. By the knowledge I gained from analyzing the data of the model system I was able to predict the nanostructure of a homemade PPy:PSS blend.rnThe morphologic, electric, and dielectric properties of water based conjugated polymer blends, e.g. PPy:PSS or PEDOT:PSS, are known to be influenced by their water content. These properties also influence the macroscopic performance when the polymer blends are employed in a device. In the second part I therefore present an in situ humidity-dependence study on PPy:PSS films spin-coated and drop-coated on hydrophobic highly ordered pyrolytic graphite substrates by KPFM. I additionally used a particular KPFM mode that detects the second harmonic electrostatic force. With this, I obtained images of dielectric constants of samples. Upon increasing relative humidity, the surface morphology and composition of the films changed. I also observed that relative humidity affected thermally unannealed and annealed PPy:PSS films differently. rnThe conductivity of a conjugated polymer may change once it is embedded in a non-conductive matrix, like for PPy embedded in PSS. To measure the conductivity of single conjugated polymer particles, in the third part, I present a direct method based on microscopic four-point probes. I started with metal core-shell and metal bulk particles as models, and measured their conductivities. The study could be extended to measure conductivity of single PPy particles (core-shell and bulk) with a diameter of a few micrometers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the field of organic optoelectronics, the nanoscale structure of the materials has huge im-pact on the device performance. Here, scanning force microscopy (SFM) techniques become increasingly important. In addition to topographic information, various surface properties can be recorded on a nanometer length scale, such as electrical conductivity (conductive scanning force microscopy, C-SFM) and surface potential (Kelvin probe force microscopy, KPFM).rnrnIn the context of this work, the electrical SFM modes were applied to study the interplay be-tween morphology and electrical properties in hybrid optoelectronic structures, developed in the group of Prof. J. Gutmann (MPI-P Mainz). In particular, I investigated the working prin-ciple of a novel integrated electron blocking layer system. A structure of electrically conduct-ing pathways along crystalline TiO2 particles in an insulating matrix of a polymer derived ceramic was found and insulating defect structures could be identified. In order to get insights into the internal structure of a device I investigated a working hybrid solar cell by preparing a cross cut with focused ion beam polishing. With C-SFM, the functional layers could be identified and the charge transport properties of the novel active layer composite material could be studied. rnrnIn C-SFM, soft surfaces can be permanently damaged by (i) tip induced forces, (ii) high elec-tric fields and (iii) high current densities close to the SFM-tip. Thus, an alternative operation based on torsion mode topography imaging in combination with current mapping was intro-duced. In torsion mode, the SFM-tip vibrates laterally and in close proximity to the sample surface. Thus, an electrical contact between tip and sample can be established. In a series of reference experiments on standard surfaces, the working mechanism of scanning conductive torsion mode microscopy (SCTMM) was investigated. Moreover, I studied samples covered with free standing semiconducting polymer nano-pillars that were developed in the group of Dr. P. Theato (University Mainz). The application of SCTMM allowed non-destructive imag-ing of the flexible surface at high resolution while measuring the conductance on individual pillarsrnrnIn order to study light induced electrical effects on the level of single nanostructures, a new SFM setup was built. It is equipped with a laser sample illumination and placed in inert at-mosphere. With this photoelectric SFM, I investigated the light induced response in function-alized nanorods that were developed in the group of Prof. R. Zentel (University Mainz). A block-copolymer containing an anchor block and dye moiety and a semiconducting conju-gated polymer moiety was synthesized and covalently bound to ZnO nanorods. This system forms an electron donor/acceptor interface and can thus be seen as a model system of a solar cell on the nanoscale. With a KPFM study on the illuminated samples, the light induced charge separation between the nanorod and the polymeric corona could not only be visualized, but also quantified.rnrnThe results demonstrate that electrical scanning force microscopy can study fundamental processes in nanostructures and give invaluable feedback to the synthetic chemists for the optimization of functional nanomaterials.rn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intense research is being done in the field of organic photovoltaics in order to synthesize low band-gap organic molecules. These molecules are electron donors which feature in combination with acceptor molecules, typically fullerene derivarntives, forming an active blend. This active blend has phase separated bicontinuous morphology on a nanometer scale. The highest recorded power conversionrnefficiencies for such cells have been 10.6%. Organic semiconductors differ from inorganic ones due to the presence of tightly bonded excitons (electron-hole pairs)resulting from their low dielectric constant (εr ≈2-4). An additional driving force is required to separate such Frenkel excitons since their binding energy (0.3-1 eV) is too large to be dissociated by an electric field alone. This additional driving force arises from the energy difference between the lowest unoccupied molecular orbital (LUMO) of the donor and the acceptor materials. Moreover, the efficiency of the cells also depends on the difference between the highest occupied molecular orbital (HOMO) of the donor and LUMO of the acceptor. Therefore, a precise control and estimation of these energy levels are required. Furthermore any external influences that change the energy levels will cause a degradation of the power conversion efficiency of organic solar cell materials. In particular, the role of photo-induced degradation on the morphology and electrical performance is a major contribution to degradation and needs to be understood on a nanometer scale. Scanning Probe Microscopy (SPM) offers the resolution to image the nanometer scale bicontinuous morphology. In addition SPM can be operated to measure the local contact potential difference (CPD) of materials from which energy levels in the materials can be derived. Thus SPM is an unique method for the characterization of surface morphology, potential changes and conductivity changes under operating conditions. In the present work, I describe investigations of organic photovoltaic materials upon photo-oxidation which is one of the major causes of degradation of these solar cell materials. SPM, Nuclear Magnetic Resonance (NMR) and UV-Vis spectroscopy studies allowed me to identify the chemical reactions occurring inside the active layer upon photo-oxidation. From the measured data, it was possible to deduce the energy levels and explain the various shifts which gave a better understanding of the physics of the device. In addition, I was able to quantify the degradation by correlating the local changes in the CPD and conductivity to the device characteristics, i.e., open circuit voltage and short circuit current. Furthermore, time-resolved electrostatic force microscopy (tr-EFM) allowed us to probe dynamic processes like the charging rate of the individual donor and acceptor domains within the active blend. Upon photo-oxidation, it was observed, that the acceptor molecules got oxidized first preventing the donor polymer from degrading. Work functions of electrodes can be tailored by modifying the interface with monomolecular thin layers of molecules which are made by a chemical reaction in liquids. These modifications in the work function are particularly attractive for opto-electronic devices whose performance depends on the band alignment between the electrodes and the active material. In order to measure the shift in work function on a nanometer scale, I used KPFM in situ, which means in liquids, to follow changes in the work function of Au upon hexadecanethiol adsorption from decane. All the above investigations give us a better understanding of the photo-degradation processes of the active material at the nanoscale. Also, a method to compare various new materials used for organic solar cells for stability is proposed which eliminates the requirement to make fully functional devices saving time and additional engineering efforts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding and controlling the mechanism of the diffusion of small molecules, macromolecules and nanoparticles in heterogeneous environments is of paramount fundamental and technological importance. The aim of the thesis is to show, how by studying the tracer diffusion in complex systems, one can obtain information about the tracer itself, and the system where the tracer is diffusing. rnIn the first part of my thesis I will introduce the Fluorescence Correlation Spectroscopy (FCS) which is a powerful tool to investigate the diffusion of fluorescent species in various environments. By using the main advantage of FCS namely the very small probing volume (<1µm3) I was able to track the kinetics of phase separation in polymer blends at late stages by looking on the molecular tracer diffusion in individual domains of the heterogeneous structure of the blend. The phase separation process at intermediate stages was monitored with laser scanning confocal microscopy (LSCM) in real time providing images of droplet coalescence and growth. rnIn a further project described in my thesis I will show that even when the length scale of the heterogeneities becomes smaller than the FCS probing volume one can still obtain important microscopic information by studying small tracer diffusion. To do so, I will introduce a system of star shaped polymer solutions and will demonstrate that the mobility of small molecular tracers on microscopic level is nearly not affected by the transition of the polymer system to a “glassy” macroscopic state. rnIn the last part of the thesis I will introduce and describe a new stimuli responsive system which I have developed, that combines two levels of nanoporosity. The system is based on poly-N-isopropylacrylamide (PNIPAM) and silica inverse opals (iOpals), and allows controlling the diffusion of tracer molecules. rn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Der erste Teil der vorliegenden Dissertation beschäftigt sich mit der Eignung des ?,?-dithiolfunktionalisierten Poly(para-phenylenethinylen)s (PPE) als sogenannter „molekularer Draht“ für die molekulare Elektronik. Über die HECK-CASSAR-SONOGASHIRA-Reaktion wurden vollständig endfunktionalisierte, defektfreie Polymere mit durchschnittlichen Polymerisationsgraden von bis zu 45 Repetitionseinheiten synthetisiert. Die starke Aggregationsneigung der PPE, die die Anordnung der Polymerketten zwischen den Goldelektroden unterstützen soll, wurde mittels Rasterkraft- und Rastertunnelmikroskopie untersucht. Für die Untersuchungen zur Dotierbarkeit wurden ESR-, ENDOR-, UPS- und XPS-Messungen durchgeführt. Es konnte gezeigt werden, dass sich das PPE reduzieren lässt.Im zweiten Teil der Arbeit wurden die PPE zur Synthese von Stäbchen-Knäuel-Diblockcopolymeren eingesetzt. Die Darstellung erfolgte nach der 'grafting onto'-Methode, indem monocarboxyl-endfunktionalisiertes PPE mit flexiblen monohydroxyl-endfunktionalisiertem Polyethylenglykol, Polydimethylsulfoxid bzw. Polytetrahydrofuran verestert wurde. Den Nachweis der Diblockcopolymerbildung erbrachten die 1H?NMR-Spektroskopie und die für Diblockcopolymere noch wenig angewandte MALDI-TOF-Massenspektrometrie. Mittels Rasterkraftmikroskopie und Computersimulationen zur Molekularmechanik und -dynamik wurden die Aggregationseigenschaften der Diblockcopolymere untersucht.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In dieser Arbeit werden, nach einer Einführung in die spinpolarisierte Rastertunnelmikroskopie und -spektroskopie als experimentelle Methode zur Untersuchung magnetischer Nanostrukturen, Ergebnisse zur spinpolarisierten elektronischen Struktur in Abhängigkeit von der Kristallstruktur am Beispiel ultradünner Co-Schichten sowie in Abhängigkeit von der Magnetisierungsrichtung für ultradünne Fe-Schichten vorgestellt. Hochaufgelöste Messungen zeigen die ortsabhängige Spinpolarisation auf einem einzelnen Kupfer-Phthalocyanin Molekül. rnrnKobalt wurde durch pseudomorphes Wachstum auf den (110)-Oberflächen der kubisch raumzentrierten Metalle Chrom und Eisen deponiert. Im Unterschied zu früheren Berichten in der Literatur lassen sich nur zwei Lagen Co in der kubisch raumzentrierten (bcc) Ordnung stabilisieren. Die bcc-Co Schichten auf der Fe(110)-Oberfläche zeigen keine Anzeichen von epitaktischen Verzerrungen. rnDickere Schichten rekonstruieren in eine dicht gepackte Struktur (hcp/fcc). Durch die bcc Ordnung wird die Spinpolarisation von Kobalt auf P=62% erhöht (hcp-Co: P=45%). rnrnDie temperaturabhängige Spinreorientierung (SRT) ultradünner Filme Fe/Mo(110) wurde mit spinpolarisierter Spektroskopie untersucht. Eine Neuausrichtung der Magnetisierung aus der senkrechten [110]-Achse in die in der Ebene liegenden [001]-Achse wird bei T=(13,2+-0,5)K festgestellt, wobei es sich um einen diskontinuierlichen Reorientierungsübergang handelt, d.h. die freie Energie weist innerhalb eines bestimmten Temperaturbereichs gleichzeitig zwei Minima auf. Weiterhin wird in der Mono- und Doppellage Fe/Mo(110 eine Abhängigkeit der elektronischen Struktur von der Ausrichtung der magnetisch leichten Achse und von der Magnetisierung beobachtet. rnrnDie Untersuchung des spinpolarisierten Ladungstransports durch ein Kupfer-Phthalocyanin-Molekül auf der Fe/Mo(110) Oberfläche liefert einen wesentlichen Beitrag zum Verständnis des Spintransports an der Grenzfläche zwischen Metall und organischem Molekül. Die HOMO-LUMO-Energielücke des freien Moleküls wird durch die Wechselwirkung mit der Metalloberfläche mit Grenzflächenzuständen gefüllt. Diese Zustände reduzieren die Spinpolarisation des durch das Molekül fließenden Tunnelstroms durch einen zusätzlichen unpolarisierten Strombeitrag um einen Faktor zwei. Spinpolarisierte hybridisierte Grenzflächenzustände mit größerem Abstand zur Fermi-Energie führen in Abhängigkeit von der Position auf dem Molekül zu weiteren Beiträgen zur effektiven Spinpolarisation. Diese Untersuchungen belegen die Möglichkeit einer effektiven Spininjektion in organische Halbleiter und damit das Potential dieser Materialien für die weitere Entwicklung von Spintronik-Bauteilen.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Die vorliegende Arbeit untersucht mittels lichtunterstützter Tunnelmikroskopie (STM) den Elektronentransport in farbstoffbedeckten, nanoporösen TiO2-Schichten, die in photoelektrochemischen Solarzellen eingesetzt werden. Transportrelevante Eigenschaften wie die elektronische Zustandsdichte sowie lichtinduzierte Vorgänge wie der Aufbau einer lichtinduzierten Oberflächenladung und lokale Photoströme werden ortsaufgelöst gemessen. Für einen möglichen Einsatz in lichtunterstützter Tunnelmikroskopie werden desweiteren Gold-Nanopartikel auf einer Amino-Hexanthiol-Monolage auf Coulomb-Blockaden untersucht. Den zweite Schwerpunkt stellen methodische Arbeiten zur Messung optischer Nahfelder in STM-Experimenten dar. Erstens sollen die Vorteile von Apertur- und aperturloser optischer Rasternahfeld-Mikroskopie mit komplett metallisierten Faserspitzen verbunden werden, die durch die Faser beleuchtet werden. Es gelingt nicht, theoretisch vorhergesagte hohe optische Auflösungen zu bestätigen. Zweitens werden transparente Spitzen aus Sb-dotiertem Zinnoxid erfolgreich als Tunnelspitzen getestet. Die Spitzen ermöglichen STM-Elektrolumineszenz-Experimente zur Charakterisierung optischer Nahfelder, ohne diese durch eine metallische Spitze zu beeinträchtigen. In einer STM-Studie wird das Selbstorganisations-Verhalten von Oktanthiol und Oktandithiol auf Au(111) aus Ethanol untersucht. Bei geringer relativer Konzentration der Dithiole (1:2000), bildet sich eine Phase liegender Dithiole, deren Ordnung durch die Präsenz der Oktanthiole katalysiert wird. Schließlich wird ein als 'dynamische Tunnelmikroskopie' bezeichneter Modus für die Tunnelmikroskopie in elektrisch leitfähiger Umgebung erfolgreich getestet, der zur Unterdrückung des elektrochemischen Leckstromanteils die Ableitung des Stroms nach dem Abstand als STM-Abstandssignal verwendet.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis presents a new imaging technique for ultracold quantum gases. Since the first observation of Bose-Einstein condensation, ultracold atoms have proven to be an interesting system to study fundamental quantum effects in many-body systems. Most of the experiments use optical imaging rnmethods to extract the information from the system and are therefore restricted to the fundamental limitation of this technique: the best achievable spatial resolution that can be achieved is comparable to the wavelength of the employed light field. Since the average atomic distance and the length scale of characteristic spatial structures in Bose-Einstein condensates such as vortices and solitons is between 100 nm and 500 nm, an imaging technique with an adequate spatial resolution is needed. This is achieved in this work by extending the method of scanning electron microscopy to ultracold quantum gases. A focused electron beam is scanned over the atom cloud and locally produces ions which are subsequently detected. The new imaging technique allows for the precise measurement of the density distribution of a trapped Bose-Einstein condensate. Furthermore, the spatial resolution is determined by imaging the atomic distribution in one-dimensional and two-dimensional optical lattices. Finally, the variety of the imaging method is demonstrated by the selective removal of single lattice site. rn