5 resultados para Scale Invariant Features Transform (SIFT)
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
The production, segregation and migration of melt and aqueous fluids (henceforth called liquid) plays an important role for the transport of mass and energy within the mantle and the crust of the Earth. Many properties of large-scale liquid migration processes such as the permeability of a rock matrix or the initial segregation of newly formed liquid from the host-rock depends on the grain-scale distribution and behaviour of liquid. Although the general mechanisms of liquid distribution at the grain-scale are well understood, the influence of possibly important modifying processes such as static recrystallization, deformation, and chemical disequilibrium on the liquid distribution is not well constrained. For this thesis analogue experiments were used that allowed to investigate the interplay of these different mechanisms in-situ. In high-temperature environments where melts are produced, the grain-scale distribution in “equilibrium” is fully determined by the liquid fraction and the ratio between the solid-solid and the solid-liquid surface energy. The latter is commonly expressed as the dihedral or wetting angle between two grains and the liquid phase (Chapter 2). The interplay of this “equilibrium” liquid distribution with ongoing surface energy driven recrystallization is investigated in Chapter 4 and 5 with experiments using norcamphor plus ethanol liquid. Ethanol in contact with norcamphor forms a wetting angle of about 25°, which is similar to reported angles of rock-forming minerals in contact with silicate melt. The experiments in Chapter 4 show that previously reported disequilibrium features such as trapped liquid lenses, fully-wetted grain boundaries, and large liquid pockets can be explained by the interplay of the liquid with ongoing recrystallization. Closer inspection of dihedral angles in Chapter 5 reveals that the wetting angles are themselves modified by grain coarsening. Ongoing recrystallization constantly moves liquid-filled triple junctions, thereby altering the wetting angles dynamically as a function of the triple junction velocity. A polycrystalline aggregate will therefore always display a range of equilibrium and dynamic wetting angles at raised temperature, rather than a single wetting angle as previously thought. For the deformation experiments partially molten KNO3–LiNO3 experiments were used in addition to norcamphor–ethanol experiments (Chapter 6). Three deformation regimes were observed. At a high bulk liquid fraction >10 vol.% the aggregate deformed by compaction and granular flow. At a “moderate” liquid fraction, the aggregate deformed mainly by grain boundary sliding (GBS) that was localized into conjugate shear zones. At a low liquid fraction, the grains of the aggregate formed a supporting framework that deformed internally by crystal plastic deformation or diffusion creep. Liquid segregation was most efficient during framework deformation, while GBS lead to slow liquid segregation or even liquid dispersion in the deforming areas.
Resumo:
The present thesis is concerned with the study of a quantum physical system composed of a small particle system (such as a spin chain) and several quantized massless boson fields (as photon gasses or phonon fields) at positive temperature. The setup serves as a simplified model for matter in interaction with thermal "radiation" from different sources. Hereby, questions concerning the dynamical and thermodynamic properties of particle-boson configurations far from thermal equilibrium are in the center of interest. We study a specific situation where the particle system is brought in contact with the boson systems (occasionally referred to as heat reservoirs) where the reservoirs are prepared close to thermal equilibrium states, each at a different temperature. We analyze the interacting time evolution of such an initial configuration and we show thermal relaxation of the system into a stationary state, i.e., we prove the existence of a time invariant state which is the unique limit state of the considered initial configurations evolving in time. As long as the reservoirs have been prepared at different temperatures, this stationary state features thermodynamic characteristics as stationary energy fluxes and a positive entropy production rate which distinguishes it from being a thermal equilibrium at any temperature. Therefore, we refer to it as non-equilibrium stationary state or simply NESS. The physical setup is phrased mathematically in the language of C*-algebras. The thesis gives an extended review of the application of operator algebraic theories to quantum statistical mechanics and introduces in detail the mathematical objects to describe matter in interaction with radiation. The C*-theory is adapted to the concrete setup. The algebraic description of the system is lifted into a Hilbert space framework. The appropriate Hilbert space representation is given by a bosonic Fock space over a suitable L2-space. The first part of the present work is concluded by the derivation of a spectral theory which connects the dynamical and thermodynamic features with spectral properties of a suitable generator, say K, of the time evolution in this Hilbert space setting. That way, the question about thermal relaxation becomes a spectral problem. The operator K is of Pauli-Fierz type. The spectral analysis of the generator K follows. This task is the core part of the work and it employs various kinds of functional analytic techniques. The operator K results from a perturbation of an operator L0 which describes the non-interacting particle-boson system. All spectral considerations are done in a perturbative regime, i.e., we assume that the strength of the coupling is sufficiently small. The extraction of dynamical features of the system from properties of K requires, in particular, the knowledge about the spectrum of K in the nearest vicinity of eigenvalues of the unperturbed operator L0. Since convergent Neumann series expansions only qualify to study the perturbed spectrum in the neighborhood of the unperturbed one on a scale of order of the coupling strength we need to apply a more refined tool, the Feshbach map. This technique allows the analysis of the spectrum on a smaller scale by transferring the analysis to a spectral subspace. The need of spectral information on arbitrary scales requires an iteration of the Feshbach map. This procedure leads to an operator-theoretic renormalization group. The reader is introduced to the Feshbach technique and the renormalization procedure based on it is discussed in full detail. Further, it is explained how the spectral information is extracted from the renormalization group flow. The present dissertation is an extension of two kinds of a recent research contribution by Jakšić and Pillet to a similar physical setup. Firstly, we consider the more delicate situation of bosonic heat reservoirs instead of fermionic ones, and secondly, the system can be studied uniformly for small reservoir temperatures. The adaption of the Feshbach map-based renormalization procedure by Bach, Chen, Fröhlich, and Sigal to concrete spectral problems in quantum statistical mechanics is a further novelty of this work.
Resumo:
In dieser Arbeit aus dem Bereich der Wenig-Nukleonen-Physik wird die neu entwickelte Methode der Lorentz Integral Transformation (LIT) auf die Untersuchung von Kernphotoabsorption und Elektronenstreuung an leichten Kernen angewendet. Die LIT-Methode ermoeglicht exakte Rechnungen durchzufuehren, ohne explizite Bestimmung der Endzustaende im Kontinuum. Das Problem wird auf die Loesung einer bindungzustandsaehnlichen Gleichung reduziert, bei der die Endzustandswechselwirkung vollstaendig beruecksichtigt wird. Die Loesung der LIT-Gleichung wird mit Hilfe einer Entwicklung nach hypersphaerischen harmonischen Funktionen durchgefuehrt, deren Konvergenz durch Anwendung einer effektiven Wechselwirkung im Rahmem des hypersphaerischen Formalismus (EIHH) beschleunigt wird. In dieser Arbeit wird die erste mikroskopische Berechnung des totalen Wirkungsquerschnittes fuer Photoabsorption unterhalb der Pionproduktionsschwelle an 6Li, 6He und 7Li vorgestellt. Die Rechnungen werden mit zentralen semirealistischen NN-Wechselwirkungen durchgefuehrt, die die Tensor Kraft teilweise simulieren, da die Bindungsenergien von Deuteron und von Drei-Teilchen-Kernen richtig reproduziert werden. Der Wirkungsquerschnitt fur Photoabsorption an 6Li zeigt nur eine Dipol-Riesenresonanz, waehrend 6He zwei unterschiedliche Piks aufweist, die dem Aufbruch vom Halo und vom Alpha-Core entsprechen. Der Vergleich mit experimentellen Daten zeigt, dass die Addition einer P-Wellen-Wechselwirkung die Uebereinstimmung wesentlich verbessert. Bei 7Li wird nur eine Dipol-Riesenresonanz gefunden, die gut mit den verfuegbaren experimentellen Daten uebereinstimmt. Bezueglich der Elektronenstreuung wird die Berechnung der longitudinalen und transversalen Antwortfunktionen von 4He im quasi-elastischen Bereich fuer mittlere Werte des Impulsuebertrages dargestellt. Fuer die Ladungs- und Stromoperatoren wird ein nichtrelativistisches Modell verwendet. Die Rechnungen sind mit semirealistischen Wechselwirkungen durchgefuert und ein eichinvarianter Strom wird durch die Einfuehrung eines Mesonaustauschstroms gewonnen. Die Wirkung des Zweiteilchenstroms auf die transversalen Antwortfunktionen wird untersucht. Vorlaeufige Ergebnisse werden gezeigt und mit den verfuegbaren experimentellen Daten verglichen.
Resumo:
The present thesis is concerned with certain aspects of differential and pseudodifferential operators on infinite dimensional spaces. We aim to generalize classical operator theoretical concepts of pseudodifferential operators on finite dimensional spaces to the infinite dimensional case. At first we summarize some facts about the canonical Gaussian measures on infinite dimensional Hilbert space riggings. Considering the naturally unitary group actions in $L^2(H_-,gamma)$ given by weighted shifts and multiplication with $e^{iSkp{t}{cdot}_0}$ we obtain an unitary equivalence $F$ between them. In this sense $F$ can be considered as an abstract Fourier transform. We show that $F$ coincides with the Fourier-Wiener transform. Using the Fourier-Wiener transform we define pseudodifferential operators in Weyl- and Kohn-Nirenberg form on our Hilbert space rigging. In the case of this Gaussian measure $gamma$ we discuss several possible Laplacians, at first the Ornstein-Uhlenbeck operator and then pseudo-differential operators with negative definite symbol. In the second case, these operators are generators of $L^2_gamma$-sub-Markovian semi-groups and $L^2_gamma$-Dirichlet-forms. In 1992 Gramsch, Ueberberg and Wagner described a construction of generalized Hörmander classes by commutator methods. Following this concept and the classical finite dimensional description of $Psi_{ro,delta}^0$ ($0leqdeltaleqroleq 1$, $delta< 1$) in the $C^*$-algebra $L(L^2)$ by Beals and Cordes we construct in both cases generalized Hörmander classes, which are $Psi^*$-algebras. These classes act on a scale of Sobolev spaces, generated by our Laplacian. In the case of the Ornstein-Uhlenbeck operator, we prove that a large class of continuous pseudodifferential operators considered by Albeverio and Dalecky in 1998 is contained in our generalized Hörmander class. Furthermore, in the case of a Laplacian with negative definite symbol, we develop a symbolic calculus for our operators. We show some Fredholm-criteria for them and prove that these Fredholm-operators are hypoelliptic. Moreover, in the finite dimensional case, using the Gaussian-measure instead of the Lebesgue-measure the index of these Fredholm operators is still given by Fedosov's formula. Considering an infinite dimensional Heisenberg group rigging we discuss the connection of some representations of the Heisenberg group to pseudo-differential operators on infinite dimensional spaces. We use this connections to calculate the spectrum of pseudodifferential operators and to construct generalized Hörmander classes given by smooth elements which are spectrally invariant in $L^2(H_-,gamma)$. Finally, given a topological space $X$ with Borel measure $mu$, a locally compact group $G$ and a representation $B$ of $G$ in the group of all homeomorphisms of $X$, we construct a Borel measure $mu_s$ on $X$ which is invariant under $B(G)$.
Resumo:
Diese Arbeit stellt eine ausführliche Studie fundamentaler Eigenschaften der Kalzit CaCO3(10.4) und verwandter Mineraloberflächen dar, welche nicht nur durch die Verwendung von Nichtkontakt Rasterkraftmikroskopie, sondern hauptsächlich durch die Messung von Kraftfeldern ermöglicht wurde. Die absolute Oberflächenorientierung sowie der hierfür zugrundeliegende Prozess auf atomarer Skala konnten erfolgreich für die Kalzit (10.4) Oberfläche identifiziert werden.rnDie Adsorption chiraler Moleküle auf Kalzit ist relevant im Bereich der Biomineralisation, was ein Verständnis der Oberflächensymmetrie unumgänglich macht. Die Messung des Oberflächenkraftfeldes auf atomarer Ebene ist hierfür ein zentraler Aspekt. Eine solche Kraftkarte beleuchtet nicht nur die für die Biomineralisation wichtige Wechselwirkung der Oberfläche mit Molekülen, sondern enthält auch die Möglichkeit, Prozesse auf atomarer Skala und damit Oberflächeneigenschaften zu identifizieren.rnDie Einführung eines höchst flexiblen Messprotokolls gewährleistet die zuverlässige und kommerziell nicht erhältliche Messung des Oberflächenkraftfeldes. Die Konversion der rohen ∆f Daten in die vertikale Kraft Fz ist jedoch kein trivialer Vorgang, insbesondere wenn Glätten der Daten in Frage kommt. Diese Arbeit beschreibt detailreich, wie Fz korrekt für die experimentellen Bedingungen dieser Arbeit berechnet werden können. Weiterhin ist beschrieben, wie Lateralkräfte Fy und Dissipation Γ erhalten wurden, um das volle Potential dieser Messmethode auszureizen.rnUm Prozesse auf atomarer Skala auf Oberflächen zu verstehen sind die kurzreichweitigen, chemischen Kräfte Fz,SR von größter Wichtigkeit. Langreichweitige Beiträge müssen hierzu an Fz angefittet und davon abgezogen werden. Dies ist jedoch eine fehleranfällige Aufgabe, die in dieser Arbeit dadurch gemeistert werden konnte, dass drei unabhängige Kriterien gefunden wurden, die den Beginn zcut von Fz,SR bestimmen, was für diese Aufgabe von zentraler Bedeutung ist. Eine ausführliche Fehleranalyse zeigt, dass als Kriterium die Abweichung der lateralen Kräfte voneinander vertrauenswürdige Fz,SR liefert. Dies ist das erste Mal, dass in einer Studie ein Kriterium für die Bestimmung von zcut gegeben werden konnte, vervollständigt mit einer detailreichen Fehleranalyse.rnMit der Kenntniss von Fz,SR und Fy war es möglich, eine der fundamentalen Eigenschaften der CaCO3(10.4) Oberfläche zu identifizieren: die absolute Oberflächenorientierung. Eine starke Verkippung der abgebildeten Objekte