10 resultados para Scaffold, Calcium silicate, Bone regeneration, Mechanical strength
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Until today, autogenic bone grafts from various donor regions represent the gold standard in the field of bone reconstruction, providing both osteoinductive and osteoconductive characteristics. However, due to low availability and a disequilibrium between supply and demand, the risk of disease transfer and morbidity, usually associated with autogeneic bone grafts, the development of biomimic materials with structural and chemical properties similar to those of natural bone have been extensively studied. So far,rnonly a few synthetic materials, so far, have met these criteria, displaying properties that allow an optimal bone reconstitution. Biosilica is formed enzymatically under physiological-relevant conditions (temperature and pH) via silicatein (silica protein), an enzyme that was isolated from siliceous sponges, cloned, and prepared in a recombinant way, retaining its catalytic activity. It is biocompatible, has some unique mechanical characteristics, and comprises significant osteoinductive activity.rnTo explore the application of biosilica in the fields of regenerative medicine,rnsilicatein was encapsulated, together with its substrate sodium metasilicate, into poly(D,L-lactide)/polyvinylpyrrolidone(PVP)-based microspheres, using w/o/wrnmethodology with solvent casting and termed Poly(D,L-lactide)-silicatein silicacontaining-microspheres [PLASSM]. Both silicatein encapsulation efficiency (40%) and catalytic activity retention upon polymer encapsulation were enhanced by addition of an essential pre-emulsifying step using PVP. Furthermore, the metabolic stability, cytoxicity as well as the kinetics of silicatein release from the PLASSM were studied under biomimetic conditions, using simulated body fluid. As a solid support for PLASSM, a polyvinylpyrrolidone/starch/Na2HPO4-based matrix (termed plastic-like filler matrix containing silicic acid [PMSA]) was developed and its chemical and physical properties determined. Moreover, due to the non-toxicity and bioinactivity of the PMSA, it is suggested that PMSA acts as osteoconductive material. Both components, PLASSM and PMSA, when added together, form arnbifunctional 2-component implant material, that is (i)non-toxic(biocompatible), (ii)moldable, (iii) self-hardening at a controlled and clinically suitable rate to allows a tight insertion into any bone defect (iv) biodegradable, (v)forms a porous material upon exposure to body biomimetic conditions, and (vi)displays both osteoinductive (silicatein)and osteoconductive (PMSA) properties.rnPreliminary in vivo experiments were carried out with rabbit femurs, by creatingrnartificial bone defects that were subsequently treated with the bifunctional 2-component implant material. After 9 weeks of implantation, both computed tomography (CT) and morphological analyses showed complete resorption of the implanted material, concurrent with complete bone regeneration. The given data can be considered as a significant contribution to the successful introduction of biosilica-based implants into the field of bone substitution surgery.
Resumo:
Patienten, die an Osteosarkom leiden werden derzeit mit intravenös applizierten krebstherapeutischen Mitteln nach Tumorresektion behandelt, was oftmals mit schweren Nebenwirkungen und einem verzögerten Knochenheilungsprozess einhergeht. Darüber hinaus treten vermehrt Rezidive aufgrund von verbleibenden neoplastischen Zellen an der Tumorresektionsstelle auf. Erfolgreiche Knochenregeneration und die Kontrolle von den im Gewebe verbleibenden Krebszellen stellt eine Herausforderung für das Tissue Engineering nach Knochenverlust durch Tumorentfernung dar. In dieser Hinsicht scheint der Einsatz von Hydroxyapatit als Knochenersatzmaterial in Kombination mit Cyclodextrin als Medikamententräger, vielversprechend. Chemotherapeutika können an Biomaterial gebunden und direkt am Tumorbett über einen längeren Zeitraum freigesetzt werden, um verbliebene neoplastische Zellen zu eliminieren. Lokal applizierte Chemotherapie hat diverse Vorteile, einschließlich der direkten zytotoxischen Auswirkung auf lokale Zellen, sowie die Reduzierung schwerer Nebenwirkungen. Diese Studie wurde durchgeführt, um die Funktionsfähigkeit eines solchen Arzneimittelabgabesystems zu bewerten und um Strategien im Bereich des Tissue Engineerings zu entwickeln, die den Knochenheilungsprozess und im speziellen die Vaskularisierung fördern sollen. Die Ergebnisse zeigen, dass nicht nur Krebszellen von der chemotherapeutischen Behandlung betroffen sind. Primäre Endothelzellen wie zum Beispiel HUVEC zeigten eine hohe Sensibilität Cisplatin und Doxorubicin gegenüber. Beide Medikamente lösten in HUVEC ein tumor-unterdrückendes Signal durch die Hochregulation von p53 und p21 aus. Zudem scheint Hypoxie einen krebstherapeutischen Einfluss zu haben, da die Behandlung sensitiver HUVEC mit Hypoxie die Zellen vor Zytotoxizität schützte. Der chemo-protektive Effekt schien deutlich weniger auf Krebszelllinien zu wirken. Diese Resultate könnten eine mögliche chemotherapeutische Strategie darstellen, um den Effekt eines zielgerichteten Medikamenteneinsatzes auf Krebszellen zu verbessern unter gleichzeitiger Schonung gesunder Zellen. Eine erfolgreiche Integration eines Systems, das Arzneimittel abgibt, kombiniert mit einem Biomaterial zur Stabilisierung und Regeneration, könnte gesunden Endothelzellen die Möglichkeit bieten zu proliferieren und Blutgefäße zu bilden, während verbleibende Krebszellen eliminiert werden. Da der Prozess der Knochengeweberemodellierung mit einer starken Beeinträchtigung der Lebensqualität des Patienten einhergeht, ist die Beschleunigung des postoperativen Heilungsprozesses eines der Ziele des Tissue Engineerings. Die Bildung von Blutgefäßen ist unabdingbar für eine erfolgreiche Integration eines Knochentransplantats in das Gewebe. Daher ist ein umfangreich ausgebildetes Blutgefäßsystem für einen verbesserten Heilungsprozess während der klinischen Anwendung wünschenswert. Frühere Experimente zeigen, dass sich die Anwendung von Ko-Kulturen aus humanen primären Osteoblasten (pOB) und humanen outgrowth endothelial cells (OEC) im Hinblick auf die Bildung stabiler gefäßähnlicher Strukturen in vitro, die auch effizient in das mikrovaskuläre System in vivo integriert werden konnten, als erfolgreich erweisen. Dieser Ansatz könnte genutzt werden, um prä-vaskularisierte Konstrukte herzustellen, die den Knochenheilungsprozess nach der Implantation fördern. Zusätzlich repräsentiert das Ko-Kultursystem ein exzellentes in vitro Model, um Faktoren, welche stark in den Prozess der Knochenheilung und Angiogenese eingebunden sind, zu identifizieren und zu analysieren. Es ist bekannt, dass Makrophagen eine maßgebliche Rolle in der inflammatorisch-induzierten Angiogenese spielen. In diesem Zusammenhang hebt diese Studie den positiven Einfluss THP-1 abgeleiteter Makrophagen in Ko-Kultur mit pOB und OEC hervor. Die Ergebnisse zeigten, dass die Anwendung von Makrophagen als inflammatorischer Stimulus im bereits etablierten Ko-Kultursystem zu einer pro-angiogenen Aktivierung der OEC führte, was in einer signifikant erhöhten Bildung blutgefäßähnlicher Strukturen in vitro resultierte. Außerdem zeigte die Analyse von Faktoren, die in der durch Entzündung hervorgerufenen Angiogenese eine wichtige Rolle spielen, eine deutliche Hochregulation von VEGF, inflammatorischer Zytokine und Adhäsionsmoleküle, die letztlich zu einer verstärkten Vaskularisierung beitragen. Diese Resultate werden dem Einfluss von Makrophagen zugeschrieben und könnten zukünftig im Tissue Engineering eingesetzt werden, um den Heilungsprozess zu beschleunigen und damit die klinische Situation von Patienten zu verbessern. Darüber hinaus könnte die Kombination der auf Ko-Kulturen basierenden Ansätze für das Knochen Tissue Engineering mit einem biomaterial-basierenden Arzneimittelabgabesystem zum klinischen Einsatz kommen, der die Eliminierung verbliebener Krebszellen mit der Förderung der Knochenregeneration verbindet.
Resumo:
Dextran-based polymers are versatile hydrophilic materials, which can provide functionalized surfaces in various areas including biological and medical applications. Functional, responsive, dextran based hydrogels are crosslinked, dextran based polymers allowing the modulation of response towards external stimuli. The controlled modulation of hydrogel properties towards specific applications and the detailed characterization of the optical, mechanical, and chemical properties are of strong interest in science and further applications. Especially, the structural characteristics of swollen hydrogel matrices and the characterization of their variations upon environmental changes are challenging. Depending on their properties hydrogels are applied as actuators, biosensors, in drug delivery, tissue engineering, or for medical coatings. However, the field of possible applications still shows potential to be expanded. rnSurface attached hydrogel films with a thickness of several micrometers can serve as waveguiding matrix for leaky optical waveguide modes. On the basis of highly swelling and waveguiding dextran based hydrogel films an optical biosensor concept was developed. The synthesis of a dextran based hydrogel matrix, its functionalization to modulate its response towards external stimuli, and the characterization of the swollen hydrogel films were main interests within this biosensor project. A second focus was the optimization of the hydrogel characteristics for cell growth with the aim of creating scaffolds for bone regeneration. Matrix modification towards successful cell growth experiments with endothelial cells and osteoblasts was achieved.rnA photo crosslinkable, carboxymethylated dextran based hydrogel (PCMD) was synthesized and characterized in terms of swelling behaviour and structural properties. Further functionalization was carried out before and after crosslinking. This functionalization aimed towards external manipulation of the swelling degree and the charge of the hydrogel matrix important for biosensor experiments as well as for cell adhesion. The modulation of functionalized PCMD hydrogel responses to pH, ion concentration, electrochemical switching, or a magnetic force was investigated. rnThe PCMD hydrogel films were optically characterized by combining surface plasmon resonance (SPR) and optical waveguide mode spectroscopy (OWS). This technique allows a detailed analysis of the refractive index profile perpendicular to the substrate surface by applying the Wentzel Kramers Brillouin (WKB) approximation. rnIn order to perform biosensor experiments, analyte capturing units such as proteins or antibodies were covalently coupled to the crosslinked hydrogel backbone by applying active ester chemistry. Consequently, target analytes could be located inside the waveguiding matrix. By using labeled analytes, fluorescence enhancement was achieved by fluorescence excitation with the electromagnetic field in the center of the optical waveguide modes. The fluorescence excited by the evanescent electromagnetic field of the surface plasmon was 2 3 orders of magnitude lower. Furthermore, the signal to noise ratio was improved by the fluorescence excitation with leaky optical waveguide modes.rnThe applicability of the PCMD hydrogel sensor matrix for clinically relevant samples was proofed in a cooperation project for the detection of PSA in serum with long range surface plasmon spectroscopy (LRSP) and fluorescence excitation by LRSP (LR SPFS). rn
Resumo:
Im Rahmen dieser Arbeit wurde die, für industrielle Applikationen sehr wichtige, Trocknung und Verfilmung von Latexdispersionen untersucht. Unter der Verfilmung wird in diesem Zusammenhang allgemein der Übergang einer Polymerdispersion in einen transparenten, mechanisch stabilen Polymerfilm während ihrer Trocknung verstanden. Für die Untersuchungen wurden schwerpunktmäßig Streumethoden verwendet. Die Untersuchungen haben gezeigt, daß die Streuung eine besonders geeignete Methode zur Untersuchung der Verfilmung ist, die in Abhängigkeit des beobachteten Streuvektorbereichs, der verwendeten Strahlung, der Probenpräparation und des resultierenden Kontrasts eine Vielzahl unterschiedlicher Informationen über die Verfilmung in ihren verschiedenen Phasen liefert. Von besonderem Interesse war es, den prinzipiellen Verlauf der Verfilmung bei den heterogen trocknenden Reinacrylatlatices zu untersuchen. Dazu wurde mit Hilfe der Röntgenultrakleinwinkelstreuung gezielt der Zustand der Partikel in den einzelnen Phasen der heterogen trocknenden Proben beobachtet. Mit Hilfe der Neutronenkleinwinkelstreuung konnte das Verhalten des Emulgators während der Verfilmung und dessen Verteilung im resultierenden Film genauer untersucht werden. Die Röntgenkleinwinkelstreuung erlaubte eine eingehende Untersuchung der Kristallisation des Emulgators im trockenen Film. Geeignete Kontrastierung durch gezielte Deuterierung ermöglichte die Untersuchung des Comonomereinflusses auf die Interdiffusion von Latexpartikeln mit Neutronenkleinwinkelstreuung. Aus den Meßergebnissen wurde ein Modell zur heterogenen Trocknung von Latexdispersionen entwickelt, das den Ablauf der Verfilmung in einem konsistenten Bild zusammenfaßt.
Resumo:
In this work the surface layer formation in polymer melts and in polymer solutions have been investigated with the atomic force microscope (AFM). In polymer melts, the formation of an immobile surface layer results in a steric repulsion, which can be measured by the AFM. From former work it is know, that polydimethyl siloxane (PDMS) forms a stable surface layer for molecular weights above 12 kDa. In the present thesis, polyisoprene (PI) was investigated apart from PDMS, by a)measuring the steric surface interactions and b)measuring the surface slip in hydrodynamic experiments. If a polymer flows over a surface, the flow velocity at the surface is larger then zero. If case of a surface layer formation the flow plane changes to the top of the adsorbed layer and the surface slip is reduced to zero. By measuring the surface slip in hydrodynamic experiments, it is therefore possible to determine the presence of a stable surface layer. The results show no stable repulsion for PI and only a small decrease of the surface slip. This indicates that PI does not form a stable surface layer, but is only adsorbed weakly to the surface. Furthermore for 8 kDa PDMS the timescale of the formation of a surface layer was investigated by changing themaximal force the tip applied to the surface. With a repulsive force present, applying a higher force than 15 nN resulted in a destruction of the surface layer, indicated by attractive forces. Reducing the applied force below 15 nN then resulted in an increase of the repulsion to the former state during one minute, thus indicating that a surface layer can be formed within one minute even under the influence of continuous measurements. As a next step, mixtures of two PDMS homopolymers with different chain lengths have been investigated. The aim was to verify theoretical predictions that shorter chains should predominate at the surface due to their smaller loss in conformational entropy. The measurements where done in dependence of the volume fractions of short and long chain PMDS. The results confirmed the short chain dominance for all mixtures with less then 90 vol.% long chain PDMS. Surface layer formation in solution was investigated for superplasticizers which are industrially used as an additive to cement. They change the surface interaction between the cement grains from attractive to repulsive and the freshlymixed cement paste therefore becomes liquid. The aimin this part of the thesis was, to investigate cement particle interactions in a close to real environment. Therefore calcium silicate hydrate phases have been precipitated onto an AFM tip and onto a calcite crystal and the interaction between these surfaces have beenmeasured with and without addition of superplasticizers. The measurements confirmed the change from attraction to repulsion upon addition of superplasticizers. The repulsive steric interaction increased with the length of the sidechain of the superplasticizer, and the dependence of the range of the steric interactions on the sidechain length indicated that the sidechains are in a coiled conformation.
Resumo:
Die vorliegende Arbeit befasst sich mit der Synthese von nanostrukturierten Antimoniden, wobei die folgenden beiden Themen bearbeitet wurden: rnAus chemischer Sicht wurden neue Synthesewege entwickelt, um Nanopartikel der Verbindungen in den binären Systemen Zn-Sb und Fe-Sb herzustellen (Zn4Sb3, ZnSb, FeSb2, Fe1+xSb). Anders als in konventionellen Festkörperreaktionen, die auf die Synthese von Bulk-Materialien oder Einkristallen zielen, muss die Synthese von Nanopartikeln Agglomerate und Ostwald-Wachstum vermeiden. Daher benötigen annehmbare Reaktionszeiten und vergleichsweise tiefe Reaktionstemperaturen kurze Diffusionswege und tiefe Aktivierungsbarrieren. Demzufolge bedient sich die Synthese der Reaktion von Antimon-Nanopartikeln und geeigneten molekularen oder nanopartikulären Edukten der entsprechenden Übergangsmetalle. Zusätzlich wurden anisotrope ZnSb Strukturen synthetisiert, indem eine Templat-Synthese mit Hilfe von anodisierten Aluminiumoxid- oder Polycarbonat-Membranen angewandt wurde. rnDie erhaltenen Produkte wurden hauptsächlich durch Röntgen-Diffraktion und Elektronenmikroskopie untersucht. Die Auswertung der Pulver Röntgendiffraktions-Daten stellte eine Herausforderung dar, da die Nanostrukturierung und die Anwesenheit von mehreren Phasen zu verbreiterten und überlagernden Reflexen führen. Zusätzliche Fe-Mößbauer Messungen wurden im Falle der Fe-Sb Produkte vorgenommen, um detailliertere Informationen über die genaue Zusammensetzung zu erhalten. Die erstmals hergestellte Phase Zn1+xSb wurde einer detaillierten Kristallstrukturanalyse unterzogen, die mit Hilfe einer neuen Diffraktionsmethode, der automatisierten Elektronen Diffraktions Tomographie, durchgeführt wurde.rnrnAus physikalischer Sicht sind Zn4Sb3, ZnSb und FeSb2 interessante thermoelektrische Materialien, die aufgrund ihrer Fähigkeit thermische in elektrische Energie umzuwandeln, großes Interesse geweckt haben. Nanostrukturierte thermoelektrische Materialien zeigen dabei eine höhere Umwandlungseffizienz zu erhöhen, da deren thermische Leitfähigkeit herabgesetzt ist. Da thermoelektrische Bauteile aus dichten Bulk-Materialien gefertigt werden, spielte die Verfestigung der synthetisierten nanopartikulären Pulver eine große Rolle. Die als „Spark Plasma Sintering“ bezeichnete Methode wurde eingesetzt, um die Proben zu pressen. Dies ermöglicht schnelles Heizen und Abkühlen der Probe und kann so das bei klassischen Heißpress-Methoden unvermeidliche Kristallitwachstum verringern. Die optimalen Bedingungen für das Spark Plasma Sintern zu finden, ist Inhalt von bestehender und weiterführender Forschung. rnEin Problem stellt die Stabilität der Proben während des Sinterns dar. Trotz des schnellen Pressens wurde eine teilweise Zersetzung im Falle des Zn1+xSb beobachtet, wie mit Hilfe von Synchrotrondiffraktionsuntersuchungen aufgedeckt wurde. Morphologie und Dichte der verschiedenen verfestigten Materialien wurden mittels Rasterelektronenmikroskopie und Lasermikroskopie bestimmt. Die Gitterdynamik wurde mit Hilfe von Wärmekapazitätsmessungen- und inelastischer Kern-Streuung untersucht. Die Wärmeleitfähigkeit der nanostrukturierten Materialien ist im Vergleich zu den Festkörpern ist drastisch reduziert - im Falle des FeSb2 um mehr als zwei Größenordnungen. Abhängig von der Zusammensetzung und mechanischen Härte wurden für einen Teil der verfestigten Nanomaterialien die thermoelektrische Eigenschaften, wie Seebeck Koeffizient, elektrische und Wärmeleitfähigkeit, gemessen.rn
Resumo:
Diese Arbeit hat viele beispiellose synthetische Ansätze für neuartige Verbundwerkstoffe Graphen-und stickstoffhaltigen graphitischen Materialien erforscht. Die erhaltenen Materialien wurden als den transparenten Elektroden der Solarzellen, die freistehenden Elektroden mit verbesserter mechanischer Festigkeit, und die Kathoden der Brennstoffzellen der Sauerstoffreduktion aufgebracht.rnAlle Ergebnisse haben eindeutig das große Potenzial von Graphen basierenden Materialien und stickstoffhaltigen graphitische Kohlenstoffe als neuartige Elektrodenmaterialien für neue Energie-Geräten demonstriert.
Resumo:
Die schlechte Prognose des Nierenzellkarzinoms (NZK) kommt nicht durch den Primärtumor an sich zustande, sondern durch das Vorhandensein von Fernmetastasen. Obwohl bereits vieles über die Mechanismen der Metastasierung bekannt ist, sind die Hintergründe der Organspezifität metastasierender Tumorzellen weitgehend ungeklärt. In 30% der Fälle kommt es zur Entstehung von Knochenmetastasen. Diese hohe Frequenz deutet darauf hin, dass NZK-Zellen bevorzugt in dieses Organ metastasieren, da die Knochenmatrix ein günstiges Mikromilieu für ihr Wachstum bietet. Hierbei könnte extrazellulärem Calcium und dem für die Detektion zuständigen Calcium-sensitiven Rezeptor (CaSR) eine entscheidende Rolle zukommen, da sich Knochen durch ihren hohen Gehalt an Calcium auszeichnen und von anderen Organen unterscheiden. Das Ziel der vorliegenden Dissertation lag in der Aufklärung der Mechanismen, die zu einer Knochenmetastasierung des NZK führen.rnrnIn ersten Analysen konnte gezeigt werden, dass sich bereits der Primärtumor durch eine von Calcium unabhängige charakteristische Expression bestimmter Signalmediatoren auszeichnet, die Metastasierungspotenzial und –ort bestimmen. So wurden in Gewebeproben und primären Tumorzellen von NZK-Patienten, die innerhalb von fünf Jahren nach Nephrektomie Knochenmetastasen entwickelten, in Westernblot-Analysen eine sehr hohe Expression der α5-Integrine, eine starke Aktivität von Akt, FAK und eine Reduktion der PTEN-Expression detektiert. Diese Veränderungen begünstigten die chemotaktische Migration in Richtung Fibronektin (bestimmt in einer Boyden-Kammer) und die Adhäsion dieser NZK-Zellen an Komponenten der Extrazellularmatrix (Fibronektin und Kollagen I – beides ist Bestandteil der Knochenmatrix). Migration und Adhäsion sind essentielle Schritte beim Austreten der Tumorzellen aus dem Primärtumor und Infiltration des Knochens. In NZK-Zellen von Patienten, die keine Metastasen oder Lungenmetastasen entwickelten, waren diese Charakteristika nicht oder deutlich schwächer ausgeprägt. Bestimmte Primärtumore sind somit prädestiniert Knochenmetastasen auszubilden.rnrnUm die Bedeutung von extrazellulärem Calcium und dem CaSR darzustellen, wurde die Expression des CaSR mittels Real-Time PCR, Westernblot-Analysen und durchflusszytometrisch in NZK-Gewebeproben und –Zellen von Patienten untersucht, die innerhalb von fünf Jahren nach Nephrektomie keine bzw. Lungen- oder Knochenmetastasen ausbildeten. Proben von Patienten mit Knochenmetastasen zeigten die stärkste Expression von CaSR-mRNA und CaSR-Protein. Durch eine Behandlung der NZK-Zellen mit Calcium in physiologischen Konzentrationen, konnte Calcium als möglicher Regulator der CaSR-Expression ausgeschlossen werden. Der Einfluss von Calcium auf die Metastasierungsfähigkeit der primären NZK-Zellen wurde anhand eines weiteren chemotaktischen Migrationsversuchs mit Calcium als Chemotaxin analysiert. Die Zellproliferationsrate konnte nach Behandlung der Zellen mit Calcium mittels BrdU-Inkorporation gemessen werden. NZK-Zellen, die aus dem Primärtumor von Patienten mit Knochenmetastasen kultiviert wurden, konnten durch eine erhöhte extrazelluläre Calcium-Konzentration verstärkt zu Migration und Proliferation (Konzentrations-abhängige Steigerung) angeregt werden. Diese stellen weitere essentielle Schritte bei der Infiltration und Vermehrung der NZK-Zellen in den Knochen dar. Die Effekte traten bei NZK-Zellen aus Patienten, die keine oder Lungenmetastasen ausbildeten, nicht auf. Die Identifizierung der beteiligten Signalwege erfolgte in Westernblot-Analysen und einem Phospho-Kinase Array. Hierdurch konnten eine verstärkte Aktivierung des Akt-, JNK-, p38α- und PLCγ-1-Signalwegs und eine beinahe vollständige Reduktion der PTEN-Expression nach Calcium-Behandlung in Knochen-metastasierenden NZK-Zellen aufgedeckt werden. Durch Blockierung des CaSR mittels des Inhibitors NPS 2143 konnte bestätigt werden, dass die metastasierungs-fördernde Wirkung von Calcium über den CaSR zustande kommt. rnrnNZK-Zellen zeichnen sich somit bereits im Primärtumor durch eine charakteristische Expression verschiedener Signalmediatoren aus, die ihr Metastasierungspotenzial und die mögliche Lokalisation der Metastase bestimmen. Gelangen metastasierende NZK-Zellen auf ihrem Weg durch den Blutkreislauf in das Knochenmilieu, verhilft ihnen hier eine hohe Expression des CaSR zu einem wichtigen Überlebensvorteil. Extrazelluläres Calcium wirkt über den CaSR, verstärkt ihre metastatischen Eigenschaften und fördert schließlich die Ausbildung einer Knochenmetastase. Aus diesem Grund kommt dem CaSR eine Rolle als möglicher prognostischer Marker hinsichtlich der Knochenmetastasierung beim NZK zu. Die Charakteristika des Primärtumors sollten daher die Auswahl des adjuvanten Therapeutikums und die Nachsorgeuntersuchungen beeinflussen. um die Medizin dem Ziel einer individualisierten Therapie näher zu bringen.rn
Resumo:
Die Bildung kieselsäurehaltiger Spicula in marinen Schwämmen ist nur möglich durch die enzymatische Aktivität des Silicatein- in Verbindung mit der stöchiometrischen Selbstassemblierung des Enzyms mit anderen Schwammproteinen. Die vorliegende Arbeit basiert auf einem biomimetischen Ansatz mit dem Ziel, unterschiedliche Oberflächen für biotechnologische und biomedizinische Anwendungen mit Biosilica und Biotitania zu beschichten und zu funktionalisieren. Für biotechnologische Anwendungen ist dabei das Drucken von Cystein-getaggtem Silicatein auf Gold-Oberflächen von Bedeutung, denn es ermöglichte die Bildung definierter Biotitania-Strukturen (Anatas), welche als Photokatalysator den Abbau eines organischen Farbstoffs bewirkten. Des Weiteren zeigte sich die bio-inspirierte Modifikation von Tyrosin-Resten an rekombinantem Silicatein-(via Tyrosinase) als vielversprechendes Werkzeug zur Beschleunigung der Selbstassemblierung des Enzyms zu mesoskaligen Filamenten. Durch eine solche Modifikation konnte Silicatein auch auf der Oberfläche von anorganischen Partikeln immobilisiert werden, welches die Assemblierung von anorganisch-organischen Verbundwerkstoffen in wäßriger Umgebung förderte. Die resultierenden supramolekularen Strukturen könnten dabei in bio-inspirierten und biotechnologischen Anwendungen genutzt werden. Weiterhin wurde in der vorliegenden Arbeit die Sekundärstruktur von rekombinantem Silicatein- (Monomer und Oligomer) durch Raman Spektroskopie analysiert, nachdem das Protein gemäß einer neu etablierten Methode rückgefaltet worden war. Diese Spektraldaten zeigten insbesondere Änderungen der Proteinkonformation durch Solubilisierung und Oligomerisierung des Enzyms. Außerdem wurden die osteoinduzierenden und osteogenen Eigenschaften unterschiedlicher organischer Polymere, die herkömmlich als Knochenersatzmaterial genutzt werden, durch Oberflächenmodifikation mit Silicatein/Biosilica verbessert: Die bei der Kultivierung knochenbildender Zellen auf derart oberflächenbehandelten Materialien beobachtete verstärkte Biomineralisierung, Aktivierung der Alkalischen Phosphatase, und Ausbildung eines typischen zellulären Phänotyps verdeutlichen das Potential von Silicatein/Biosilica für der Herstellung neuartiger Implantat- und Knochenersatzmaterialien.
Resumo:
Mechanische Eigenschaften nach Verfilmen sind häufig die wichtigsten Anforderungen für Polyurethandispersionen, so werden beispielsweise in den Hauptanwendungen im Beschichtungs- und Klebstoffsektor oftmals hohe Festigkeiten benötigt. Diese Anforderungen werden in der Dissertation durch eine gezielte Strukurbildung in den Polymeren adressiert. Mit einer hohen Kontrolle über den Polymeraufbau, durch die Ausbildung von kristallinen Bereichen, sowie mit phasenseparierten Morphologien werden drei Konzepte für die Modifikation der mechanischen Eigenschaften vorgestellt: Eine chemische bzw. kovalente Vernetzung wird mit funktionalisierten Polyurethanen erreicht, die physikalische Vernetzung kann reversibel die mechanische Festigkeit von Filmen erhöhen und Hybride mit kontrollierter Morphologie zeigen eine Kombination von Vorteilen ihrer Einzelbestandteile. Ferner zeichnen sich die synthetisierten Polyurethane gegenüber anderen Polymerklassen durch ihre relativ einfache Synthese und die Möglichkeit zur Herstellung multifunktionaler Materialien aus.