2 resultados para SYNDIOTACTIC POLYPROPENE
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
In this work, the remarkable versatility and usefulness of applications of Xe-129 NMR experiments is further extended. The application of Xe-129 NMR spectroscopy to very different system is studied, including dynamic and static, solid and liquid, porous and non-porous systems. Using the large non-equilibrium polarization created by hyperpolarization of Xe-129, time-resolved NMR measurements can be used for the online-monitoring of dynamic systems. In the first part of this work, several improvements for medical applications of hyperpolarized Xe-129 are achieved and their feasibility shown experimentally. A large gain in speed and reproducibility of the accumulation process of Xe-129 as ice and an enhancement of the usable polarization in any experiment requiring prior accumulation are achieved. An enhancement of the longitudinal relaxation time of Xe-129 is realized by admixture of a buffer gas during the storage of hyperpolarized Xe-129. Pursuing the efforts of simplifying the accumulation process and enhancing the storage time of hyperpolarized Xe-129 will allow for a wider use of the hyperpolarized gas in (medical) MRI experiments. Concerning the use of hyperpolarized Xe-129 in MRI, the influence of the diffusion coefficient of the gas on parameters of the image contrast is experimentally demonstrated here by admixture of a buffer gas and thus changing the diffusion coefficient. In the second part of this work, a polymer system with unique features is probed by Xe-129 NMR spectroscopy, proving the method to be a valuable tool for the characterization of the anisotropic properties of semicrystalline, syndiotactic polystyrene films. The polymer films contain hollow cavities or channels with sizes in the sub-nanometer range, allowing for adsorption of Xe-129 and subsequent NMR measurements. Despite the use of a ’real-world’ system, the transfer of the anisotropic properties from the material to adsorbed Xe-129 atoms is shown, which was previously only known for fully crystalline materials. The anisotropic behavior towards atomar guests inside the polymer films is proven here for the first time for one of the phases. For the polymer phase containing nanochannels, the dominance of interactions between Xe-129 atoms in the channels compared to interactions between Xe atoms and the channel walls are proven by measurements of a powder sample of the polymer material and experiments including the rotation of the films in the external magnetic field as well as temperature-dependent measurements. The characterization of ’real-world’ systems showing very high degrees of anisotropy by Xe-129 are deemed to be very valuable in future applications. In the last part of this work, a new method for the online monitoring of chemical reactions has been proposed and its feasibility and validity are experimentally proven. The chemical shift dependence of dissolved Xe-129 on the composition of a reaction mixture is used for the online monitoring of free-radical miniemulsion polymerization reactions. Xe-129 NMR spectroscopy provides an excellent method for the online monitoring of polymerization reactions, due to the simplicity of the Xe-129 NMR spectra and the simple relationship between the Xe-129 chemical shift and the reaction conversion. The results of the time-resolved Xe-129 NMR measurements are compared to those from calorimetric measurements, showing a good qualitative agreement. The applicability of the new method to reactions other than polymerization reactions is investigated by the online monitoring of an enzymatic reaction in a miniemulsion. The successful combination of the large sensitivity of Xe-129, the NMR signal enhancements due to hyperpolarization, and the solubility of Xe-129 gives access to the large new field of investigations of chemical reaction kinetics in dynamic and complex systems like miniemulsions.
Resumo:
Die vorliegende Dissertation untersucht Nanopartikel und Nanokapseln aus verschiedenen Materialien mit verschiedenen Modifikationen für einen zielgerichteten Medikamententransport (Drug Targeting). Obwohl bisher zahlreiche Nanopartikel und -kapseln synthetisiert wurden, besteht nach wie vor hinsichtlich der zellulären Verträglichkeit, Biokompatibilität und Aufnahme kein allumfassendes Verständnis. Mit Hilfe der in dieser Arbeit vorgestellten Untersuchungen und Ergebnissen soll ein Beitrag zur Schließung dieser Lücke geleistet werden.rnIm Rahmen der vorliegenden Dissertation wurde der Einfluss der Herstellungsmaterialien PS, PLLA, PMMA, Biomakromoleküle (BSA, DNA), ggf. stabilisiert durch HPMA-LMA-Copolymere und neu-synthetisierte Surfmere, der Formmodifikationen Streckung und Kristallisierung, der Oberflächenmodifikationen mittels verschiedener Tenside und PEG auf die zelluläre Aufnahme und Verträglichkeit hin untersucht.rnZusammenfassend lässt sich die Aussage treffen, dass zahlreiche Materialien zur Herstellung von Trägersystemen geeignet sind und sich als biokompatibel und nicht-zytotoxisch erwiesen haben, sich jedoch stark hinsichtlich der Aufnahmeeffizienz in verschiedene Zelllinien unterscheiden. rnIm ersten Abschnitt (Kapitel 5.1) wurden in der ersten und zweiten Untersuchung auf allgemeine Parameter, die die Aufnahme von Nanopartikeln beeinflussen, eingegangen. Hier wurde der Einfluss des Alters von PLLA-Partikeln auf die zelluläre Aufnahme und Toxizität untersucht. Es konnte gezeigt werden, dass mit zunehmender Materialalterung die zelluläre Aufnahme abnimmt. Eine Zytotoxizität konnte nicht gezeigt werden.rnWeiterhin wurde der Einfluss des FCS-Gehalts des Zell-Mediums auf die zelluläre Aufnahme von PMMA-Partikeln untersucht. Es konnte gezeigt werden, dass mit einer steigenden FCS-Konzentration eine Abnahme der zellulären Aufnahme von PMMA-Partikeln einhergeht. Die höchste zelluläre Aufnahme konnte bei einem FCS-Gehalt des Zellmediums von 0,05% verzeichnet werden. rnIm zweiten Abschnitt (Kapitel 5.2) wurde die Stabilisierung von Nanopartikeln mittels neusynthetisierter Tenside und deren Einfluss auf die Zelle-Nanopartikel-Interaktionen untersucht. Dazu wurde zum einen die Oberflächenfunktionalisierung von Nanopartikeln mit Hilfe neu-synthetisierter „Surfmere“ und deren Einfluss auf die zelluläre Aufnahme und Toxizität untersucht. Die hergestellten Surfmere bewirken gleichzeitig eine Stabilisierung und Funktionalisierung der Nanopartikeloberfläche mit Phosphonatgruppen. Hier wurden kovalente „Surfmer“ stabilisierte Nanopartikel mit Tensid- (SDP) stabilisierten Nanopartikeln verglichen. Zudem wurden dialysierte Nanopartikel mit nicht-dialysierten verglichen. Bezüglich der zellulären Aufnahme konnte für die mittels Dialyse gereinigten Nanopartikel eine gute Aufnahme ohne Unterschiede zwischen den kovalent und nicht-kovalent Phosphonat-funktionalisierten Partikeln beobachtet werden. Die ungereinigten, SDP-stabilisierte, nicht-kovalent gebundene Nanopartikel zeigten hingegen eine bis zu 30% stärkere Aufnahme in die HeLa-Zellen und hMSCs.rnWeiterhin der Einsatz von mit HPMA-LMA-Copolymeren stabilisierte Polystyrol- und PLLA-Partikel, die den Einsatz von Tensiden während des Miniemulsionsprozesses überflüssig machen, untersucht. Auch hier konnte keine Zytotoxizität nachgewiesen werden. Die Aufnahme in HeLa-Zellen scheint mehr von der Größe der Nanopartikel als vom verwendeten Material und in hMSCs mehr von den Oberflächeneigenschaften der Nanopartikel abzuhängen.rnIm dritten Abschnitt (Kapitel 5.3) wird auf die Möglichkeit der Formmodifikation von Polystyrol-Partikeln und deren Einfluss auf die Nanopartikel-Zelle-Interaktionen eingegangen. Es geht dabei um die Aufnahme und Zytotoxizität von verstreckten (elongierten) Polystyrol-Partikeln im Vergleich zu sphärischen Nanopartikeln, sowie die Aufnahme und Zytotoxizität von kristallinen Polystyrol-Partikeln in verschiedene Zelllinien. Bei den verstreckten Partikeln nimmt die Aufnahme-Effizienz in HeLa-Zellen und hMSCs mit zunehmender Verstreckung ab. Eine Zytotoxizität konnte für keinen der erwähnten Nanopartikel nachgewiesen werden. Bei den Polystyrol-Partikeln unterschiedlicher Taktizität zeigen die kristallierten Polystyrol-Partikel eine geringfügig besser Aufnahme-Rate als die nicht-kristallierten Polystyrol-Partikel. Dabei zeigen die nach dem Herstellungsprozess mittels der Lösemittelverdampfungstechnik der wässrigen Phase entnommenen Partikel eine bessere Aufnahme als die nach der Verdampfung des Chloroforms verfügbaren Partikel. Insgesamt konnte jedoch für alle Polystyrol-Partikel trotz der unterschiedlichen Taktizitäten nach der Aufnahme in HeLa-Zellen und hMSCs mittels Durchflusszytometrie hohe Fluoreszenz-Intensitäten verzeichnet werden. Setzt man hohe Fluoreszenz-Intensitäten bei in Zellen aufgenommenen Partikeln mit guten Aufnahmeraten gleich, sind die hier dargestellten Aufnahmeraten als sehr gut zu bezeichnen. rnAuf Nanosysteme mit einer reduzierten zellulären Aufnahme wird im letzten Abschnitt (Kapitel 5.4) eingegangen. Dabei wird zum einen die unterschiedliche Oberflächenmodifikation von Polystyrol-Partikeln mit dem Co-Monomer PEG-MA und den Tensiden SDS und Lutensol AT50 untersucht. Von PEG-MA wurden zudem verschiedene Molekulargewichte (Mn=300 g•mol-1 und Mn=2080 g•mol-1) und verschiedene Konzentrationen (1,5%, 5%, 10%) eingesetzt. Ein Teil der Partikel wurde mit SDS und der andere Teil mit Lutensol AT50 hergestellt. In einem weiteren Schritt wurde das jeweilig gegenteilige Tensid (statt SDS Lutensol AT50 und umgekehrt) eingesetzt, um zu überprüfen, ob sich der zuvor beobachtete Effekt umkehren lässt. Anschließend wurde ein erst mit SDS stabilisierter Nanopartikel (BR01) mit verschiedenen Lutensol AT50-Anteilen (5%, 10%, 25%, 50%, 100%) redispergiert. Die effizienteste Aufnahme zeigte der unmodifizierte, mit SDS stabilisierte Nanopartikel BR01, die niedrigste der ebenfalls unmodifizierte, mit Lutensol AT50 stabilisierte Nanopartikel BR02. Eine steigende Konzentration des PEG-MA Mn=300 g•mol-1 hemmt die Aufnahme von mit SDS stabilisierten Partikeln konstant. Für PEG-MA Mn=2080 g•mol-1 konnte hingegen kein Einfluss nachgewiesen werden. Für die mit Lutensol AT50 stabilisierten Partikel konnte kein Einfluss von PEG-MA nachgewiesen werden. Daraus resultiert, dass der Einsatz von physikalisch adsorbiertem Lutensol AT50 die zelluläre Aufnahme effektiver hemmt als der Einsatz von kovalent gebundenem PEG-MA unterschiedlicher Kettenlänge.rnDer Einsatz von mit Biomakromolekülen hergestellten Nanokapseln, die mit zwei verschiedenen Tensiden (SDS und Lutensol AT50) stabilisiert wurden, wurde im Weiteren näher untersucht. Bei den mit SDS stabilisierten Kapseln erwiesen sich die mit ssDNA hergestellten Kapseln BN-54 und BN-55 als leicht toxisch für die HeLa-Zellen. Dagegen sind alle eingesetzten, mit Lutensol AT50 redispergierten Nanokapseln sowohl für HeLa-Zellen als auch für hMSCs zytotoxisch. Hier ist die toxische Wirkung auf das nicht-ionische Tensid Lutensol AT50 zurückzuführen. Eine zelluläre Aufnahme konnte für keine mit Biomakromolekülen hergestellten Nanokapsel nachgewiesen werden.rnDen Abschluss der Untersuchungen bildet die vergleichende Analyse der in dieser Arbeit mit dem Fluoreszenzfarbstoff PMI versehenen Partikeln hinsichtlich deren Aufnahme in HeLa-Zellen und hMSCs und deren zytotoxische Auswirkungen. In der vergleichenden Analyse werden die zuvor vorgestellten Ergebnisse für PMI-Partikeln nochmal im Kontext betrachtet. Dabei erwies sich sowohl für die HeLa-Zellen als auch für die hMSCs, dass die meisten Partikel eine geringe bis keine zelluläre Aufnahme zeigen. Eine gute Aufnahme konnte nur für wenige Nanopartikel (vor allem für die kristallinen Nanopartikel) verzeichnet werden. Eine Korrelation zwischen der Aufnahmeeffizienz und der Zytotoxizität konnte nicht nachgewiesen werden. rn