2 resultados para SULFATE REDUCTION

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Zusammenfassung Die komplexe Lebensgemeinschaft des Termitendarms fasziniert die Biologen schon seit langem. Es ist bekannt, dass Termiten ihre Nahrung mit Hilfe von symbiontischen Bakterien und Protozoen verdauen können. Ohne ihre Symbionten würden sie verhungern. Das Zusammenspiel von Termiten und darmbewohnenden Mikroorganismen, zu denen Flagellaten, Bakterien, Archaebakterien und Hefen gehören, ist trotz moderner Untersuchungstechniken keineswegs vollständig aufgeklärt. In der vorliegenden Arbeit wurden:1) Einige kultivierte und nicht-kultivierte Bakterien charakterisiert, die an der Darmwand von Mastotermes darwiniensis lokalisiert sind. Die Darmwandbakterien wurden entweder nach Kultivierung oder direkt von der Darmwand für die Analyse der 16S rDNA verwendet. Die Sequenzierung erfolgte entweder nach DGGE oder nach Klonierung der PCR-Produkte. Die identifizierten Bakterien kann man in 7 Gruppen teilen:1: Gram-positive Bakterien mit hohem GC-Gehalt 2: Gram-positive Bakterien mit niedrigem GC-Gehalt 3: Fusobakterien-ähnliche Bakterien 4: ß-Proteobakterien5: Verrucomicrobien6: Bacteroides-ähnliche Bakterien7: Methanogene Bakterien 2) Aufgrund des Vorhandenseins des Coenzyms Deazaflavin-Derivats F420, kann man Methanbakterien mikroskopisch identifizieren und von anderen Bakterien unterscheiden, weil Methanbakterien im kurzwelligen Blaulicht blaugrün aufleuchten. Untersuchungen haben gezeigt, dass mindestens zwei Morphotypen von Methanbakterien an der Darmwand von M. darwiniensis vorkommen. Sie wurden auch über 16S rDNA Sequenzanalyse identifiziert. Ihre Lokalisierung an der Darmwand wurde durch Fluoreszenz-in-situ-Hybridsierung mit spezifischen Oligonukleotiden nachgewiesen. Schließlich konnte gezeigt werden, dass pro Gramm Termite 2,6 µg Methan pro Stunde produziert werden. 3) Bis jetzt wurden aus verschiedenen Termiten sulfatreduzierende Bakterien (SRB) isoliert. Deshalb wurde in dieser Arbeit die Verbreitung der SRB in verschiedenen Insekten untersucht. Insgesamt wurden zwei Sequenzen aus Libellenlarven (FSBO4 und FSBRO2), drei Sequenzen aus Zuckmückenlarven (FSCI, FSCII und FSC4), eine Sequenz aus Rosenkäfern (FSPa4-5) und ebenfalls eine Sequenz aus Eintagsfliegenlarven (FSB6) identifiziert. Alle identifizierten Bakterien ausser Klon FSB6, gehören zur Gattung Desulfovibrio. Klon FSB6 gehört zu der Gram-positiven Gattung Desulfotomaculum.Außerdem wurde die Sulfatreduktionsrate der SRB im Darm von Rosenkäfern (Pachnoda marginata), Holz- bzw. Sulfat-gefütterten Termiten (Mastotermes darwiniensis) und einer Reinkultur von Desulfovibrio intestinalis gemessen. Dabei konnte gezeigt werden, dass die Aktivität pro Zelle in Holz-gefütterten Termite am höchsten ist (4,9 nmol/107 Bakterien x h).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Der zunehmende Anteil von Strom aus erneuerbaren Energiequellen erfordert ein dynamisches Konzept, um Spitzenlastzeiten und Versorgungslücken aus der Wind- und Solarenergie ausgleichen zu können. Biogasanlagen können aufgrund ihrer hohen energetischen Verfügbarkeit und der Speicherbarkeit von Biogas eine flexible Energiebereitstellung ermöglichen und darüber hinaus über ein „Power-to-Gas“-Verfahren bei einem kurzzeitigen Überschuss von Strom eine Überlastung des Stromnetzes verhindern. Ein nachfrageorientierter Betrieb von Biogasanlagen stellt jedoch hohe Anforderungen an die Mikrobiologie im Reaktor, die sich an die häufig wechselnden Prozessbedingungen wie der Raumbelastung im Reaktor anpassen muss. Eine Überwachung des Fermentationsprozesses in Echtzeit ist daher unabdingbar, um Störungen in den mikrobiellen Gärungswegen frühzeitig erkennen und adäquat entgegenwirken zu können. rnBisherige mikrobielle Populationsanalysen beschränken sich auf aufwendige, molekularbiologische Untersuchungen des Gärsubstrates, deren Ergebnisse dem Betreiber daher nur zeitversetzt zur Verfügung stehen. Im Rahmen dieser Arbeit wurde erstmalig ein Laser-Absorptionsspektrometer zur kontinuierlichen Messung der Kohlenstoff-Isotopenverhältnisse des Methans an einer Forschungsbiogasanlage erprobt. Dabei konnten, in Abhängigkeit der Raumbelastung und Prozessbedingungen variierende Isotopenverhältnisse gemessen werden. Anhand von Isolaten aus dem untersuchten Reaktor konnte zunächst gezeigt werden, dass für jeden Methanogenesepfad (hydrogeno-troph, aceto¬klastisch sowie methylotroph) eine charakteristische, natürliche Isotopensignatur im Biogas nachgewiesen werden kann, sodass eine Identifizierung der aktuell dominierenden methanogenen Reaktionen anhand der Isotopen-verhältnisse im Biogas möglich ist. rnDurch den Einsatz von 13C- und 2H-isotopen¬markierten Substraten in Rein- und Mischkulturen und Batchreaktoren, sowie HPLC- und GC-Unter¬suchungen der Stoffwechselprodukte konnten einige bislang unbekannte C-Flüsse in Bioreaktoren festgestellt werden, die sich wiederum auf die gemessenen Isotopenverhältnisse im Biogas auswirken können. So konnte die Entstehung von Methanol sowie dessen mikrobieller Abbauprodukte bis zur finalen CH4-Bildung anhand von fünf Isolaten erstmalig in einer landwirtschaftlichen Biogasanlage rekonstruiert und das Vorkommen methylotropher Methanogenesewege nachgewiesen werden. Mithilfe molekularbiologischer Methoden wurden darüber hinaus methanoxidierende Bakterien zahlreicher, unbekannter Arten im Reaktor detektiert, deren Vorkommen aufgrund des geringen O2-Gehaltes in Biogasanlagen bislang nicht erwartet wurde. rnDurch die Konstruktion eines synthetischen DNA-Stranges mit den Bindesequenzen für elf spezifische Primerpaare konnte eine neue Methode etabliert werden, anhand derer eine Vielzahl mikrobieller Zielorganismen durch die Verwendung eines einheitlichen Kopienstandards in einer real-time PCR quantifiziert werden können. Eine über 70 Tage durchgeführte, wöchentliche qPCR-Analyse von Fermenterproben zeigte, dass die Isotopenverhältnisse im Biogas signifikant von der Zusammensetzung der Reaktormikrobiota beeinflusst sind. Neben den aktuell dominierenden Methanogenesewegen war es auch möglich, einige bakterielle Reaktionen wie eine syntrophe Acetatoxidation, Acetogenese oder Sulfatreduktion anhand der δ13C (CH4)-Werte zu identifizieren, sodass das hohe Potential einer kontinuierlichen Isotopenmessung zur Prozessanalytik in Biogasanlagen aufgezeigt werden konnte.rn