6 resultados para STRANGE ATTRACTORS
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Die A4-Kollaboration am Mainzer Mikrotron MAMI erforscht die Struktur des Protons mit Hilfe der elastischen Streuung polarisierter Elektronen an unpolarisiertem Wasserstoff. Bei longitudinaler Polarisation wird eine paritätsverletzende Asymmetrie im Wirkungsquerschnitt gemessen, die Aufschluß über den Beitrag der Strangeness zu den Vektor-Formfaktoren des Protons gibt. Bei transversaler Polarisation treten azimutale Asymmetrien auf, die auf Beiträge des Zwei-Photon-Austauschs zum Wirkungsquerschnitt zurückzuführen sind und den Zugriff auf den Imaginärteil der Zwei-Photon-Amplitude ermöglichen. Im Rahmen der vorliegenden Arbeit wurden Messungen bei zwei Impulsüberträgen und jeweils Longitudinal- und Transversalpolarisation durchgeführt und analysiert. Im Vordergrund standen die Extraktion der Rohasymmetrien aus den Daten, die Korrekturen der Rohasymmetrien auf apparative Asymmetrien, die Abschätzung des systematischen Fehlers und die Bestimmung der Strange-Formfaktoren aus den paritätsverletzenden Asymmetrien. Bei den Messungen mit Longitudinalpolarisation wurden die Asymmetrien zu A=(-5.59 +- 0.57stat +- 0.29syst)ppm bei Q^2=0.23 (GeV/c)^2 und A=(-1.39 +- 0.29stat +- 0.12syst)ppm bei Q^2=0.11(GeV/c)^2 bestimmt. Daraus lassen sich die Linearkombinationen der Strange-Formfaktoren zu GEs+0.225GMs= 0.029 +- 0.034 bzw. GEs+0.106GMs=0.070+-0.035 ermitteln. Die beiden Resultate stehen in Übereinstimmung mit anderen Experimenten und deuten darauf hin, daß es einen nichtverschwindenden Strangeness-Beitrag zu den Formfaktoren gibt. Bei den Messungen mit Transversalpolarisation wurden die azimutalen Asymmetrien zu A=(-8.51 +- 2.31stat +-0.89syst)ppm bei E=855 MeV und Q^2=0.23(GeV/c)^2 und zu A=(-8.59 +- 0.89stat +- 0.83syst)ppm bei E=569 MeV und Q^2=0.11(GeV/c)^2 bestimmt. Die Größe der gemessenen Asymmetrien belegt, daß beim Zwei-Photon-Austausch neben dem Grundzustand des Protons vor allem auch angeregte Zwischenzustände einen wesentlichen Beitrag liefern.
Resumo:
In dieser Arbeit wurde die paritätsverletzende Asymmetrie in derrnquasielastischen Elektron-Deuteron-Streuung bei Q^2=0.23 (GeV/c)^2 mitrneinem longitudinal polarisierten Elektronstrahl bei einer Energie von 315rnMeV bestimmt. Die Messung erfolgte unter Rückwärtswinkeln. Der Detektor überdeckte einen polaren Streuwinkelbereichrnzwischen 140 und 150 deg. Das Target bestand aus flüssigemrnDeuterium in einer Targetzelle mit einer Länge von 23.4 cm. Dierngemessene paritätsverletzende Asymmetrie beträgt A_{PV}^d = (-20.11 pm 0.87_{stat} pm 1.03_{syst}), wobei der erste Fehler den statistischenrnFehlereitrag und der zweite den systematischen Fehlerbeitrag beschreibt. Ausrnder Kombination dieser Messung mit Messungen der paritätsverletzendenrnAsymmetrie in der elastischen Elektron-Proton-Streuung bei gleichem Q^2rnsowohl bei Vorwärts- als auch bei Rückwärtsmessungen können diernVektor-Strange-Formfaktoren sowie der effektive isovektorielle und isoskalarernVektorstrom des Protons, der die elektroschwachen radiativen Anapolkorrekturenrnenthält, bestimmt werden. Diese Arbeit umfasst ausserdem die Bestimmungrnder Asymmetrien bei einem transversal polarisierten Elektronstrahl sowohl beirneinem Proton- als auch einem Deuterontarget unter Rückwärtswinkeln beirnImpulsüberträgen von Q^2=0.10 (GeV/c)^2, Q^2=0.23 (GeV/c)^2rnund Q^2=0.35 (GeV/c)^2. Die im Experiment beobachteten Asymmetrien werdenrnmit theoretischen Berechnungen verglichen, welche den Imaginärteil der Zweiphoton-Austauschamplitude beinhalten.
Resumo:
Die A4-Kollaboration am Mainzer Mikrotron MAMI erforscht die Struktur des Protons mit Hilfe der elastischen Streuung polarisierter Elektronen an unpolarisiertem Wasserstoff. Bei longitudinaler Polarisation wird die paritätsverletzende Asymmetrie im Wirkungsquerschnitt gemessen, die Aufschluss über den Strangeness-Beitrag zu den Vektor-Formfaktoren des Protons gibt. Insbesondere wurde eine Messung für Rückwärtsstreuwinkel bei einer Elektronenstrahlenergie von 319 MeV durchgeführt, die zusammen mit einem unter Vorwärtsstreuung bei gleichem Impulsübertrag bestimmten Wert die Separation der magnetischen und elektrischen Strangeness-Formfaktoren erlaubt. Im Rahmen der vorliegenden Arbeit wurde ein Elektroniksystem zur Energiemessung und Histogrammierung der auftretenden Einzelereignisse aufgebaut, das eine vernetzte Struktur aus 1022 Einzelkanälen besitzt und zur Verarbeitung einer Gesamtereignisrate von 100 MHz ausgelegt wurde. Für den experimentellen Betrieb wurden für alle Kanäle erforderliche Qualitäts-prüfungen und Eichmessungen vorgenommen. Die volle Funktionsfähigkeit des Systems zur Durchführung eines Zählratenexperiments für die paritätsverletzende Asymmetrie im Bereich von 10^{-6} wurde demonstriert. Um den bei rückwärtigen Streuwinkeln dominierenden inelastischen Untergrund an Photonen in den Spektren zu reduzieren, wurde das System außerdem um ein Taggersystem für Elektronen erweitert. Das Ergebnis einer vorläufigen Analyse für die paritätsverletzende Asymmetrie im Streuquerschnitt von longitudinal polarisierten Elektronen an unpolarisierten Protonen unter Rückwärtsstreuung bei einem Viererimpulsübertrag Q^2 = 0.23 GeV^2/c^2 beträgt A{PV}=(-16.37 +- 0.93 {stat} +- 0.69 {syst}) ppm. Für die Differenz der gemessenen Asymmetrie A{PV} und der theoretischen Vorhersage ohne Strangeness A{0}=(-16.27 +- 1.22) ppm ergibt sich A{S}= A{PV} - A{0} = (-0.10+-1.68) ppm. Mit dem bereits vorliegenden Wert der Vorwärtsstreuung von A{PV} = (-5.59+- 0.57 {stat} +- 0.29 {syst}) ppm kann ein Wert für den magnetischen bzw. elektrischen Formfaktor von G{M}^s = -0.01+- 0.15 bzw. G{E}^s = 0.034 +- 0.050 ermittelt werden.
Resumo:
The main concern of the A4 parity violation experiment at the Mainzer Microtron accelerator facility is to study the electric and magnetic contributions of strange quarks to the charge and magnetism of the nucleons at the low momentum transfer region. More precisely, the A4 collaboration investigates the strange quarks' contribution to the electric and magnetic vector form factors of the nucleons. Thus, it is important that the A4 experiment uses an adequate and precise non-destructive online monitoring tool for the electron beam polarization when measuring single spin asymmetries in elastic scattering of polarized electrons from unpolarized nucleons. As a consequence, the A4 Compton backscattering polarimeter was designed and installed such that we can take the absolute measurement of the electron beam polarization without interruption to the parity violation experiment. The present study shows the development of an electron beam line that is called the chicane for the A4 Compton backscattering polarimeter. The chicane is an electron beam transport line and provides an interaction region where the electron beam and the laser beam overlap. After studying the properties of beam line components carefully, we developed an electron beam control system that makes a beam overlap between the electron beam and the laser beam. Using the system, we can easily achieve the beam overlap in a short time. The electron control system, of which the performance is outstanding, is being used in production beam times. And the study presents the development of a scintillating fiber electron detector that reduces the statistical error in the electron polarization measurement. We totally redesigned the scintillating fiber detector. The data that were taken during a 2008 beam time shows a huge background suppression, approximately 80 percent, while leaving the Compton spectra almost unchanged when a coincidence between the fiber detector and the photon detector is used. Thus, the statistical error of the polarization measurement is reduced by about 40 percent in the preliminary result. They are the significant progress in measuring a degree of polarization of the electron beam.
Resumo:
Im Rahmen des A4-Experiments werden die Beiträge des Strange-Quarks zu den elektromagnetischen Formfaktoren des Protons gemessen. Solche Seequarkeffekte bei Niederenergieobservablen sind für das Verständnis der Hadronenstruktur wichtig, denn sie stellen eine direkte Manifestation der QCD-Freiheitsgrade im nichtperturbativen Bereich dar.rnrnLinearkombinationen der Strangeness-Vektorformfaktoren des Protons $G_E^s$ und $G_M^s$ sind experimentell über die Messung der paritätsverletzenden Asymmetrie im Wirkungsquerschnitt der elastischen Streuung longitudinal polarisierter Elektronen an unpolarisierten Nukleonen zugänglich. Vor dieser Arbeit hatte die A4-Kollaboration zwei solche Messungen unter Vorwärtsstreuwinkeln bei den Viererimpulsübertägen $Q^2$ von jeweils 0.23 und 0.10 (GeV/c)$^2$ veröffentlicht. Um die Separation von $G_E^s$ und $G_M^s$ beim höheren $Q^2$-Wert zu erhalten, wurde eine Messung unter Rückwärtswinkeln mit der Strahlenergie von 315 MeV durchgeführt.rnrnIm A4-Experiment werden die an einem Flüssigwasserstoff-Target gestreuten Elektronen eines longitudinal polarisierten Strahls mit einem Cherenkov-Kalorimeter einzeln gezählt. Durch die kalorimetrische Energiemessung erfolgt die Trennung der elastischen von den inelastischen Ereignissen. Bei Rückwärtswinkeln wurde dieses Apparat mit einem Szintillator als Elektronentagger erweitert, um den $\gamma$-Untergrund aus dem $\pi^0$-Zerfall zu unterdrücken.rnrnUm die Auswertung dieser Messung zu ermöglichen, wurden im Rahmen dieser Arbeit die gemessenen Energiespektren anhand von ausführlichen Simulationen der Streuprozesse und des Antwortverhaltens der Detektoren untersucht, und eine Methode zur Behandlung des restlichen Untergrunds aus der $\gamma$-Konversionrnvor dem Szintillator entwickelt. Die Simulationergebnisse sind auf dem 5%-Niveau mit den Messungen verträglich, und es wurde bewiesen, dass die Methode der Untergrundbehandlung anwendbar ist.rnrnDie Asymmetriemessung bei Rückwärtswinkeln, die man nach Anwendung der hier erarbeiteten Untergrundbehandlung erhält, wurde für die Separation von $G_E^s$ und $G_M^s$ bei $Q^2$=0.22 (GeV/c)^2 mit der Vorwärtswinkelmessung beim selbenrn$Q^2$ kombiniert. Es ergeben sich die Werte:rnrn$G_M^s$= -0.14 ± 0.11_{exp} ± 0.11_{theo} undrn$G_E^s$= 0.050 ± 0.038_{exp} ± 0.019_{theo}, rnrnwobei die systematische Unsicherheit wegen der Untergrundbehandlung im experimentellen Fehler enthalten ist. Am Ende der Arbeit werden die aus diesen Resultaten folgenden Rückschlüsse auf den Einfluss der Strangeness auf die statischen elektromagnetischen Eigenschaften des Protons diskutiert.rn
Resumo:
Das A4-Experiment bestimmt den Beitrag der Strangequarks zu den elektromagnetischen Formfaktoren des Nukleons durch Messung der Paritätsverletzung in der elastischen Elektron-Nukleon-Streuung. Diese Messungen werden mit dem spinpolarisierten Elektronenstrahl des Mainzer Mikrotrons (MAMI) bei Strahlenergien zwischen 315 und 1508 MeV ndurchgeführt. Die Bestimmung des Strahlpolarisationsgrades ist für die Analyse der Daten unerläßlich, um die physikalische Asymmetrie aus der gemessenen paritätsverletzenden Asymmetrie extrahieren zu können. Aus diesem Grund wird von der A4-Kollaboration ein neuartiges Compton-Laserrückstreupolarimeter entwickelt, das eine zerstörungsfreie Messung der Strahlpolarisation, parallel zum laufenden Paritätsexperiment erlaubt. Um den zuverlässigen Dauerbetrieb des Polarimeters zu ermöglichen, wurde das Polarimeter im Rahmen dieser Arbeit weiterentwickelt. Das Datenerfassungssystem für Photonen- und Elektronendetektor wurde neu aufgebaut und im Hinblick auf die Verarbeitung hoher Raten optimiert. Zum Nachweis der rückgestreuten Photonen wurde ein neuartiger Detektor (LYSO) in Betrieb genommen. Darüber hinaus wurden GEANT4-Simulationen der Detektoren durchgeführt und eine Analyseumgebung für die Extraktion von Comptonasymmetrien aus den Rückstreudaten entwickelt. Das Analyseverfahren nutzt die Möglichkeit, die rückgestreuten Photonen durch koinzidente Detektion der gestreuten Elektronen energiemarkiert nachzuweisen (Tagging). Durch die von der Energiemarkierung eingeführte differentielle Energieskala wird somit eine präzise Bestimmung der Analysierstärke möglich. In der vorliegenden Arbeit wurde die Analysierstärke des Polarimeters bestimmt, so daß nun das Produkt von Elektronen- und Laserstrahlpolarisation bei einem Strahlstrom von 20 muA, parallel zum laufenden Paritätsexperiment, mit einer statistischen Genauigkeit von 1% in 24 Stunden bei 855 MeV bzw. <1% in 12 Stunden bei 1508 MeV gemessen werden kann. In Kombination mit der Bestimmung der Laserpolarisation in einer parallelen Arbeit (Y. Imai) auf 1% kann die statistische Unsicherheit der Strahlpolarisation im A4-Experiment von zuvor 5% auf nun 1,5% bei 1508MeV verringert werden. Für die Daten zur Messung der paritätsverletzenden Elektronenstreuung bei einem Viererimpulsübertrag von $Q^2=0,6 (GeV/c)^2$ beträgt die Rohasymmetrie beim derzeitigen Stand der Analyse $A_{PV}^{Roh} = ( -20,0 pm 0,9_{stat} ) cdot 10^{-6}$. Für eine Strahlpolarisation von 80% erhält man einen Gesamtfehler von $1,68 cdot 10^{-6}$ für $Delta P_e/P_e = 5 %$. Als Ergebnis dieser Arbeit wird sich dieser Fehler durch Analyse der Daten des Compton-Laserrückstreupolarimeters um 29% auf $1,19 cdot 10^{-6}$ ($Delta P_e/P_e = 1,5 %$) verringern lassen.