3 resultados para SPONTANEOUS CLEARANCE
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Therapeutic vaccination for chronic hepatitis B in the Trimera mouse modelrnRaja Vuyyuru and Wulf O. BöcherrnHepatitis B is a liver disease caused by Hepatitis B virus (HBV). It ranges in severity from a mild illness, lasting a few weeks (acute), to a serious long-term (chronic) illness that can lead either to liver disease or liver cancer. Acute infection is self limiting in most adults, resulting in clearance of virus from blood and liver and the development of lasting immunity. However 5% of acutely infected patients do not resolve primary HBV infection, leading to chronic infection with persistent viral replication in the liver. The strength of the initial antiviral immune response elicited to Hepatitis B determines the subsequent clinical outcome. A strong and broad T cell response leads to spontaneous resolution. Conversely, a weak T cell response favours viral persistence and establishment of chronic disease. While treatments using interferon-alpha or nucleos(t)ide analogues can reduce disease progression, they rarely lead to complete recovery. The lack of a suitable small animal model hampered efforts to understand the mechanisms responsible for immune failure in these chronic patients.rnIn current study we used Trimera mice to study the efficacy of potential vaccine candidates using HBV loaded dendritic cells in HBV chronic infection in vivo. The Trimera mouse model is based on Balb/c mice implanted with SCID mouse bone marrow and human peripheral blood mononuclear cells (PBMC) from HBV patients, and thus contains the immune system of the donor including their HBV associated T cell defect.rnIn our present study, strong HBV specific CD4+ and CD8+ T cell responses were enhanced by therapeutic vaccination in chronic HBV patients. These T cell responses occurred independently of either the course of the disease or the strength of their underlying HBV specific T cell failure. These findings indicate that the Trimera mouse model represents a novel experimental tool for evaluating potential anti-HBV immunotherapeutic agents. This in vivo data indicated that both the HBV specific CD4+ cell and CD8+ responses were elicited in the periphery. These HBV specific T cells proliferated and secreted cytokines upon restimulation in Trimera mice. The observation that these HBV specific T cells are not detectable directly ex vivo indicates that they must be immune tolerant or present at a very low frequency in situ. HBV specific T cell responses were suppressed in Trimera mice under viremic conditions, suggesting that viral factors might be directly involved in tolerizing or silencing antiviral T cell responses. Thus, combination of an effective vaccine with antiviral treatment to reduce viremia might be a more effective therapeutic strategy for the future. Such approaches should be tested in Trimera mice generated in HBV or HBs expressing transgenic mice before conducting clinical trials.rn
Resumo:
Materials that can mold the flow of elastic waves of certain energy in certain directions are called phononic materials. The present thesis deals essentially with such phononic systems, which are structured in the mesoscale (<1 µm), and with their individual components. Such systems show interesting phononic properties in the hypersonic region, i.e., at frequencies in the GHz range. It is shown that colloidal systems are excellent model systems for the realization of such phononic materials. Therefore, different structures and particle architectures are investigated by Brillouin light scattering, the inelastic scattering of light by phonons.rnThe experimental part of this work is divided into three chapters: Chapter 4 is concerned with the localized mechanical waves in the individual spherical colloidal particles, i.e., with their resonance- or eigenvibrations. The investigation of these vibrations with regard to the environment of the particles, their chemical composition, and the influence of temperature on nanoscopically structured colloids allows novel insights into the physical properties of colloids at small length scales. Furthermore, some general questions concerning light scattering on such systems, in dispute so far, are convincingly addressed.rnChapter 5 is a study of the traveling of mechanical waves in colloidal systems, consisting of ordered and disordered colloids in liquid or elastic matrix. Such systems show acoustic band gaps, which can be explained geometrically (Bragg gap) or by the interaction of the acoustic band with the eigenvibrations of the individual spheres (hybridization gap).rnWhile the latter has no analogue in photonics, the presence of strong phonon scatterers, when a large elastic mismatch between the composite components exists, can largely impact phonon propagation in analogy to strong multiple light scattering systems. The former is exemplified in silica based phononic structures that opens the door to new ways of sound propagation manipulation.rnChapter 6 describes the first measurement of the elastic moduli in newly fabricated by physical vapor deposition so-called ‘stable organic glasses’. rnIn brief, this thesis explores novel phenomena in colloid-based hypersonic phononic structures, utilizing a versatile microfabrication technique along with different colloid architectures provided by material science, and applying a non-destructive optical experimental tool to record dispersion diagrams.rn
Resumo:
During the perinatal period the developing brain is most vulnerable to inflammation. Prenatal infection or exposure to inflammatory factors can have a profound impact on fetal neurodevelopment with long-term neurological deficits, such as cognitive impairment, learning deficits, perinatal brain damage and cerebral palsy. Inflammation in the brain is characterized by activation of resident immune cells, especially microglia and astrocytes whose activation is associated with a variety of neurodegenerative disorders like Alzheimer´s disease and Multiple sclerosis. These cell types express, release and respond to pro-inflammatory mediators such as cytokines, which are critically involved in the immune response to infection. It has been demonstrated recently that cytokines also directly influence neuronal function. Glial cells are capable of releaseing the pro-inflammatory cytokines MIP-2, which is involved in cell death, and tumor necrosis factor alpha (TNFalpha), which enhances excitatory synaptic function by increasing the surface expression of AMPA receptors. Thus constitutively released TNFalpha homeostatically regulates the balance between neuronal excitation and inhibition in an activity-dependent manner. Since TNFalpha is also involved in neuronal cell death, the interplay between neuronal activity MIP-2 and TNFalpha may control the process of cell death and cell survival in developing neuronal networks. An increasing body of evidence suggests that neuronal activity is important in the regulation of neuronal survival during early development, e.g. programmed cell death (apoptosis) is augmented when neuronal activity is blocked. In our study we were interested on the impact of inflammation on neuronal activity and cell survival during early cortical development. To address this question, we investigated the impact of inflammation on neuronal activity and cell survival during early cortical development in vivo and in vitro. Inflammation was experimentally induced by application of the endotoxin lipopolysaccharide (LPS), which initiates a rapid and well-characterized immune response. I studied the consequences of inflammation on spontaneous neuronal network activity and cell death by combining electrophysiological recordings with multi-electrode arrays and quantitative analyses of apoptosis. In addition, I used a cytokine array and antibodies directed against specific cytokines allowing the identification of the pro-inflammatory factors, which are critically involved in these processes. In this study I demonstrated a direct link between inflammation-induced modifications in neuronal network activity and the control of cell survival in a developing neuronal network for the first time. Our in vivo and in vitro recordings showed a fast LPS-induced reduction in occurrence of spontaneous oscillatory activity. It is indicated that LPS-induced inflammation causes fast release of proinflammatory factors which modify neuronal network activity. My experiments with specific antibodies demonstrate that TNFalpha and to a lesser extent MIP-2 seem to be the key mediators causing activity-dependent neuronal cell death in developing brain. These data may be of important clinical relevance, since spontaneous synchronized activity is also a hallmark of the developing human brain and inflammation-induced alterations in this early network activity may have a critical impact on the survival of immature neurons.