2 resultados para SOFTWARE-RELIABILITY MODELS
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Abstract Originalsprache (englisch) Visual perception relies on a two-dimensional projection of the viewed scene on the retinas of both eyes. Thus, visual depth has to be reconstructed from a number of different cues that are subsequently integrated to obtain robust depth percepts. Existing models of sensory integration are mainly based on the reliabilities of individual cues and disregard potential cue interactions. In the current study, an extended Bayesian model is proposed that takes into account both cue reliability and consistency. Four experiments were carried out to test this model's predictions. Observers had to judge visual displays of hemi-cylinders with an elliptical cross section, which were constructed to allow for an orthogonal variation of several competing depth cues. In Experiment 1 and 2, observers estimated the cylinder's depth as defined by shading, texture, and motion gradients. The degree of consistency among these cues was systematically varied. It turned out that the extended Bayesian model provided a better fit to the empirical data compared to the traditional model which disregards covariations among cues. To circumvent the potentially problematic assessment of single-cue reliabilities, Experiment 3 used a multiple-observation task, which allowed for estimating perceptual weights from multiple-cue stimuli. Using the same multiple-observation task, the integration of stereoscopic disparity, shading, and texture gradients was examined in Experiment 4. It turned out that less reliable cues were downweighted in the combined percept. Moreover, a specific influence of cue consistency was revealed. Shading and disparity seemed to be processed interactively while other cue combinations could be well described by additive integration rules. These results suggest that cue combination in visual depth perception is highly flexible and depends on single-cue properties as well as on interrelations among cues. The extension of the traditional cue combination model is defended in terms of the necessity for robust perception in ecologically valid environments and the current findings are discussed in the light of emerging computational theories and neuroscientific approaches.
Resumo:
Analyzing and modeling relationships between the structure of chemical compounds, their physico-chemical properties, and biological or toxic effects in chemical datasets is a challenging task for scientific researchers in the field of cheminformatics. Therefore, (Q)SAR model validation is essential to ensure future model predictivity on unseen compounds. Proper validation is also one of the requirements of regulatory authorities in order to approve its use in real-world scenarios as an alternative testing method. However, at the same time, the question of how to validate a (Q)SAR model is still under discussion. In this work, we empirically compare a k-fold cross-validation with external test set validation. The introduced workflow allows to apply the built and validated models to large amounts of unseen data, and to compare the performance of the different validation approaches. Our experimental results indicate that cross-validation produces (Q)SAR models with higher predictivity than external test set validation and reduces the variance of the results. Statistical validation is important to evaluate the performance of (Q)SAR models, but does not support the user in better understanding the properties of the model or the underlying correlations. We present the 3D molecular viewer CheS-Mapper (Chemical Space Mapper) that arranges compounds in 3D space, such that their spatial proximity reflects their similarity. The user can indirectly determine similarity, by selecting which features to employ in the process. The tool can use and calculate different kinds of features, like structural fragments as well as quantitative chemical descriptors. Comprehensive functionalities including clustering, alignment of compounds according to their 3D structure, and feature highlighting aid the chemist to better understand patterns and regularities and relate the observations to established scientific knowledge. Even though visualization tools for analyzing (Q)SAR information in small molecule datasets exist, integrated visualization methods that allows for the investigation of model validation results are still lacking. We propose visual validation, as an approach for the graphical inspection of (Q)SAR model validation results. New functionalities in CheS-Mapper 2.0 facilitate the analysis of (Q)SAR information and allow the visual validation of (Q)SAR models. The tool enables the comparison of model predictions to the actual activity in feature space. Our approach reveals if the endpoint is modeled too specific or too generic and highlights common properties of misclassified compounds. Moreover, the researcher can use CheS-Mapper to inspect how the (Q)SAR model predicts activity cliffs. The CheS-Mapper software is freely available at http://ches-mapper.org.