4 resultados para SI-NANOCRYSTALS
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
The last decade has witnessed an exponential growth of activities in the field of nanoscience and nanotechnology worldwide, driven both by the excitement of understanding new science and by the potential hope for applications and economic impacts. The largest activity in this field up to date has been in the synthesis and characterization of new materials consisting of particles with dimensions in the order of a few nanometers, so-called nanocrystalline materials. [1-8] Semiconductor nanomaterials such as III/V or II/VI compound semiconductors exhibit strong quantum confinement behavior in the size range from 1 to 10 nm. Therefore, preparation of high quality semiconductor nanocrystals has been a challenge for synthetic chemists, leading to the recent rapid progress in delivering a wide variety of semiconducting nanomaterials. Semiconductor nanocrystals, also called quantum dots, possess physical properties distinctly different from those of the bulk material. Typically, in the size range from 1 to 10 nm, when the particle size is changed, the band gap between the valence and the conduction band will change, too. In a simple approximation a particle in a box model has been used to describe the phenomenon[9]: at nanoscale dimensions the degenerate energy states of a semiconductor separate into discrete states and the system behaves like one big molecule. The size-dependent transformation of the energy levels of the particles is called “quantum size-effect”. Quantum confinement of both the electron and hole in all three dimensions leads to an increase in the effective bandgap of the material with decreasing crystallite size. Consequently, both the optical absorption and emission of semiconductor nanaocrystals shift to the blue (higher energies) as the size of the particles gets smaller. This color tuning is well documented for CdSe nanocrystals whose absorption and emission covers almost the whole visible spectral range. As particle sizes become smaller the ratio of surface atoms to those in the interior increases, which has a strong impact on particle properties, too. Prominent examples are the low melting point [8] and size/shape dependent pressure resistance [10] of semiconductor nanocrystals. Given the size dependence of particle properties, chemists and material scientists now have the unique opportunity to change the electronic and chemical properties of a material by simply controlling the particle size. In particular, CdSe nanocrystals have been widely investigated. Mainly due to their size-dependent optoelectronic properties [11, 12] and flexible chemical processibility [13], they have played a distinguished role for a number of seminal studies [11, 12, 14, 15]. Potential technical applications have been discussed, too. [8, 16-27] Improvement of the optoelectronic properties of semiconductor nanocrystals is still a prominent research topic. One of the most important approaches is fabricating composite type-I core-shell structures which exhibit improved properties, making them attractive from both a fundamental and a practical point of view. Overcoating of nanocrystallites with higher band gap inorganic materials has been shown to increase the photoluminescence quantum yields by eliminating surface nonradiative recombination sites. [28] Particles passivated with inorganic shells are more robust than nanocrystals covered by organic ligands only and have greater tolerance to processing conditions necessary for incorporation into solid state structures or for other applications. Some examples of core-shell nanocrystals reported earlier include CdS on CdSe [29], CdSe on CdS, [30], ZnS on CdS, [31] ZnS on CdSe[28, 32], ZnSe on CdSe [33] and CdS/HgS/CdS [34]. The characterization and preparation of a new core-shell structure, CdSe nanocrystals overcoated by different shells (CdS, ZnS), is presented in chapter 4. Type-I core-shell structures as mentioned above greatly improve the photoluminescence quantum yield and chemical and photochemical stability of nanocrystals. The emission wavelengths of type-I core/shell nanocrystals typically only shows a small red-shift when compared to the plain core nanocrystals. [30, 31, 35] In contrast to type-I core-shell nanocrystals, only few studies have been conducted on colloidal type-II core/shell structures [36-38] which are characterized by a staggered alignment of conduction and valence bands giving rise to a broad tunability of absorption and emission wavelengths, as was shown for CdTe/CdSe core-shell nanocrystals. [36] The emission of type-II core/shell nanocrystals mainly originates from the radiative recombination of electron-hole pairs across the core-shell interface leading to a long photoluminescence lifetime. Type-II core/shell nanocrystals are promising with respect to photoconduction or photovoltaic applications as has been discussed in the literature.[39] Novel type-II core-shell structures with ZnTe cores are reported in chapter 5. The recent progress in the shape control of semiconductor nanocrystals opens new fields of applications. For instance, rod shaped CdSe nanocrystals can enhance the photo-electro conversion efficiency of photovoltaic cells, [40, 41] and also allow for polarized emission in light emitting diodes. [42, 43] Shape control of anisotropic nanocrystals can be achieved by the use of surfactants, [44, 45] regular or inverse micelles as regulating agents, [46, 47] electrochemical processes, [48] template-assisted [49, 50] and solution-liquid-solution (SLS) growth mechnism. [51-53] Recently, formation of various CdSe nanocrystal shapes has been reported by the groups of Alivisatos [54] and Peng, [55] respectively. Furthermore, it has been reported by the group of Prasad [56] that noble metal nanoparticles can induce anisotropic growth of CdSe nanocrystals at lower temperatures than typically used in other methods for preparing anisotropic CdSe structures. Although several approaches for anisotropic crystal growth have been reported by now, developing new synthetic methods for the shape control of colloidal semiconductor nanocrystals remains an important goal. Accordingly, we have attempted to utilize a crystal phase control approach for the controllable synthesis of colloidal ZnE/CdSe (E = S, Se, Te) heterostructures in a variety of morphologies. The complex heterostructures obtained are presented in chapter 6. The unique optical properties of nanocrystals make them appealing as in vivo and in vitro fluorophores in a variety of biological and chemical investigations, in which traditional fluorescence labels based on organic molecules fall short of providing long-term stability and simultaneous detection of multiple emission colours [References]. The ability to prepare water soluble nanocrystals with high stability and quantum yield has led to promising applications in cellular labeling, [57, 58] deep-tissue imaging, [59, 60] and assay labeling [61, 62]. Furthermore, appropriately solubilized nanocrystals have been used as donors in fluorescence resonance energy transfer (FRET) couples. [63-65] Despite recent progress, much work still needs to be done to achieve reproducible and robust surface functionalization and develop flexible (bio-) conjugation techniques. Based on multi-shell CdSe nanocrystals, several new solubilization and ligand exchange protocols have been developed which are presented in chapter 7. The organization of this thesis is as follows: A short overview describing synthesis and properties of CdSe nanocrystals is given in chapter 2. Chapter 3 is the experimental part providing some background information about the optical and analytical methods used in this thesis. The following chapters report the results of this work: synthesis and characterization of type-I multi-shell and type-II core/shell nanocrystals are described in chapter 4 and chapter 5, respectively. In chapter 6, a high–yield synthesis of various CdSe architectures by crystal phase control is reported. Experiments about surface modification of nanocrystals are described in chapter 7. At last, a short summary of the results is given in chapter 8.
Resumo:
In der vorliegenden Dissertation werden die Kernreaktionen 25Mg(alpha,n)28Si, 26Mg(alpha,n)29Si und 18O(alpha,n)21Ne im astrophysikalisch interessanten Energiebereich von E alpha = 1000 keV bis E alpha = 2450 keV untersucht.rnrnDie Experimente wurden am Nuclear Structure Laboratory der University of Notre Dame (USA) mit dem vor Ort befindlichen Van-de-Graaff Beschleuniger KN durchgeführt. Hierbei wurden Festkörpertargets mit evaporiertem Magnesium oder anodisiertem Sauerstoff mit alpha-Teilchen beschossen und die freigesetzten Neutronen untersucht. Zum Nachweis der freigesetzten Neutronen wurde mit Hilfe von Computersimulationen ein Neutrondetektor basierend auf rn3He-Zählrohren konstruiert. Weiterhin wurden aufgrund des verstärkten Auftretens von Hintergrundreaktionen verschiedene Methoden zur Datenanalyse angewendet.rnrnAbschliessend wird mit Hilfe von Netzwerkrechnungen der Einfluss der Reaktionen 25Mg(alpha,n)28Si, 26Mg(alpha,n)29Si und 18O(alpha,n)21Ne auf die stellare Nukleosynthese untersucht.rn
Resumo:
This thesis describes the ultra-precise determination of the g-factor of the electron bound to hydrogenlike 28Si13+. The experiment is based on the simultaneous determination of the cyclotron- and Larmor frequency of a single ion, which is stored in a triple Penning-trap setup. The continuous Stern-Gerlach effect is used to couple the spin of the bound electron to the motional frequencies of the ion via a magnetic bottle, which allows the non-destructive determination of the spin state. To this end, a highly sensitive, cryogenic detection system was developed, which allowed the direct, non-destructive detection of the eigenfrequencies with the required precision.rnThe development of a novel, phase sensitive detection technique finally allowed the determination of the g-factor with a relative accuracy of 40 ppt, which was previously inconceivable. The comparison of the hereby determined value with the value predicted by quantumelectrodynamics (QED) allows the verification of the validity of this fundamental theory under the extreme conditions of the strong binding potential of a highly charged ion. The exact agreement of theory and experiment is an impressive demonstration of the exactness of QED. The experimental possibilities created in this work will allow in the near future not only further tests of theory, but also the determination of the mass of the electron with a precision that exceeds the current literature value by more than an order of magnitude.
Resumo:
Primitive kohlige Chondrite sind Meteorite, die seit ihrer Entstehung im frühen Sonnensystem kaum verändert wurden und dadurch einen Einblick in Prozesse geben, die zur Bildung und Veränderung der ersten festen Materie führten. Solche Prozesse können anhand von Bruchstücken dieser Meteorite detailliert im Labor studiert werden, sodass Rückschlüsse auf die Entwicklung unseres Sonnensystems im frühen Stadium getroffen werden können. Ca-, Al-reiche Einschlüsse (CAIs) aus chondritischen Meteoriten sind die ersten Festkörper des Sonnensystems und enthalten viele refraktäre Metallnuggets (RMNs), welche hauptsächlich aus den Elementen Os, Ir, Ru, Mo und Pt bestehen. Nach weit verbreiteter Ansicht sind diese Nuggets wahrscheinlich im Gleichgewicht mit dem solaren Nebel kondensiert, bereits früher oder gleichzeitig mit Oxiden und Silikaten. Die exakten Mechanismen, die zu ihren heute beobachteten Eigenschaften führten, sind allerdings unklar. Um frühere Arbeiten fortzuführen, wurde eine hohe Anzahl RMNs in vier unterschiedlichen Typen von Meteoriten detailliert studiert, darunter solche aus dem nahezu unveränderten Acfer 094, Allende (CV3ox), Leoville (CV3red) und Murchison (CM2). Die RMNs wurden in-situ, assoziiert mit ihren Wirtsmineralen und auch in Säurerückständen gefunden, deren Präparationsprozedur in dieser Arbeit speziell für RMNs durch eine zusätzliche Dichtetrennung verbessert wurde.rnDie Ergebnisse decken eine Reihe von Ungereimtheiten zwischen den beobachteten RMN-Eigenschaften und einer Kondensationsherkunft auf, sowohl für Kondensation in solarer Umgebung, als auch für Kondensation aus Material von Supernovae oder roten Riesen, für die die Kondensationssequenzen refraktärer Metalle speziell für diesen Vergleich berechnet wurden. Stattdessen wurden in dieser Arbeit neue Einblicke in die RMN-Entstehung und die Entwicklung der ersten Festkörper (CAIs) durch eine Kombination aus experimentellen, isotopischen, strukturellen und petrologischen Studien an RMNs gewonnen. Viele der beobachteten Eigenschaften sind mit Ausfällung der RMN aus einer CAI-Schmelze vereinbar. Ein solches Szenario wird durch entsprechende Untersuchungen an synthetisch hergestellten, mit refraktären Metallen im Gleichgewicht stehenden CAI-Schmelzen bestätigt. Es folgt aus den Ergebnissen, dass die Mehrzahl der RMNs isotopisch solar ist und alle untersuchten RMNs innerhalb von CAIs bei rascher Abkühlung (um bis zu 1000 °C/40 sek.) einer CAI-Schmelze gebildet wurden. rn