2 resultados para SEAWEED SARGASSUM

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

10.00% 10.00%

Publicador:

Resumo:

It has been demonstrated that iodine does have an important influence on atmospheric chemistry, especially the formation of new particles and the enrichment of iodine in marine aerosols. It was pointed out that the most probable chemical species involved in the production or growth of these particles are iodine oxides, produced photochemically from biogenic halocarbon emissions and/or iodine emission from the sea surface. However, the iodine chemistry from gaseous to particulate phase in the coastal atmosphere and the chemical nature of the condensing iodine species are still not understood. A Tenax / Carbotrap adsorption sampling technique and a thermo-desorption / cryo-trap / GC-MS system has been further developed and improved for the volatile organic iodine species in the gas phase. Several iodo-hydrocarbons such as CH3I, C2H5I, CH2ICl, CH2IBr and CH2I2 etc., have been measured in samples from a calibration test gas source (standards), real air samples and samples from seaweeds / macro-algae emission experiments. A denuder sampling technique has been developed to characterise potential precursor compounds of coastal particle formation processes, such as molecular iodine in the gas phase. Starch, TMAH (TetraMethylAmmonium Hydroxide) and TBAH (TetraButylAmmonium Hydroxide) coated denuders were tested for their efficiencies to collect I2 at the inner surface, followed by a TMAH extraction and ICP/MS determination, adding tellurium as an internal standard. The developed method has been proved to be an effective, accurate and suitable process for I2 measurement in the field, with the estimated detection limit of ~0.10 ng∙L-1 for a sampling volume of 15 L. An H2O/TMAH-Extraction-ICP/MS method has been developed for the accurate and sensitive determination of iodine species in tropospheric aerosol particles. The particle samples were collected on cellulose-nitrate filters using conventional filter holders or on cellulose nitrate/tedlar-foils using a 5-stage Berner impactor for size-segregated particle analysis. The water soluble species as IO3- and I- were separated by anion exchanging process after water extraction. Non-water soluble species including iodine oxide and organic iodine were digested and extracted by TMAH. Afterwards the triple samples were analysed by ICP/MS. The detection limit for particulate iodine was determined to be 0.10~0.20 ng•m-3 for sampling volumes of 40~100 m3. The developed methods have been used in two field measurements in May 2002 and September 2003, at and around the Mace Head Atmospheric Research Station (MHARS) located at the west coast of Ireland. Elemental iodine as a precursor of the iodine chemistry in the coastal atmosphere, was determined in the gas phase at a seaweed hot-spot around the MHARS, showing I2 concentrations were in the range of 0~1.6 ng∙L-1 and indicating a positive correlation with the ozone concentration. A seaweed-chamber experiment performed at the field measurement station showed that the I2 emission rate from macro-algae was in the range of 0.019~0.022 ng•min-1•kg-1. During these experiments, nanometer-particle concentrations were obtained from the Scanning Mobility Particle Sizer (SMPS) measurements. Particle number concentrations were found to have a linear correlation with elemental iodine in the gas phase of the seaweeds chamber, showing that gaseous I2 is one of the important precursors of the new particle formation in the coastal atmosphere. Iodine contents in the particle phase were measured in both field campaigns at and around the field measurement station. Total iodine concentrations were found to be in the range of 1.0 ~ 21.0 ng∙m-3 in the PM2.5 samples. A significant correlation between the total iodine concentrations and the nanometer-particle number concentrations was observed. The particulate iodine species analysis indicated that iodide contents are usually higher than those of iodate in all samples, with ratios in the range of 2~5:1. It is possible that those water soluble iodine species are transferred through the sea-air interface into the particle phase. The ratio of water soluble (iodate + iodide) and non-water soluble species (probably iodine oxide and organic iodine compounds) was observed to be in the range of 1:1 to 1:2. It appears that higher concentrated non-water soluble species, as the products of the photolysis from the gas phase into the particle phase, can be obtained in those samples while the nucleation events occur. That supports the idea that iodine chemistry in the coastal boundary layer is linked with new particle formation events. Furthermore, artificial aerosol particles were formed from gaseous iodine sources (e.g. CH2I2) using a laboratory reaction-chamber experiment, in which the reaction constant of the CH2I2 photolysis was calculated to be based upon the first order reaction kinetic. The end products of iodine chemistry in the particle phase were identified and quantified.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In der marinen Grenzschicht beeinflussen reaktive Iodspezies wie z.B. I2 sowie aliphatische Amine eine Vielzahl atmosphärischer Prozesse, vor allem bei der Partikelneubildung spielen sie eine entscheidende Rolle. Allerdings stellt die Quantifizierung dieser Verbindungen im Spurenbereich immer noch eine große analytische Herausforderung dar. rnAus diesem Grund wurde im Rahmen der vorliegenden Arbeit das GTRAP-AMS (Gaseous compound trapping in artificially generated particles – aerosol mass spectrometry) entwickelt, um gasförmiges I2 und aliphatische Amine zu bestimmen. Hierbei wird ein Flugzeit-Aerosolmassenspektrometer (ToF-AMS), das ursprünglich für die on-line Charakterisierung von Aerosolen entwickelt wurde, mit einer GTRAP-Einheit gekoppelt. Im Fall von I2 werden mit Hilfe eines pneumatischen Zerstäubers a-Cyclodextrin/NH4Br-Partikel erzeugt, die mit dem gasförmigen I2 innerhalb der GTRAP-Einheit eine Einschlussverbindung bilden und dieses dadurch selektiv in die Partikelphase aufnehmen. Für die on-line Bestimmung gasförmiger aliphatischer Amine dagegen wurde Phosphorsäure als partikulärer Reaktionspartner eingesetzt. Nach Optimierung des GTRAP-AMS Systems wurde sowohl für I2 als auch für die aliphatischen Amine eine Nachweisgrenze im sub-ppb-Bereich für eine Zeitauflösung zwischen 1 und 30 min erhalten. Als erstes wurde das GTRAP-AMS System zur Charakterisierung von Permanentdenudern eingesetzt, um deren I2-Aufnahmefähigkeit und Wiederverwendbarkeit im Vergleich zu den herkömmlichen einmal verwendbaren a-Cyclodextrin Denudern zu testen.rnIm Anschluss daran wurde das GTRAP-AMS für die Bestimmung zeitlich aufgelöster I2- Emissionsraten ausgewählter Makroalgen unter dem Einfluss von Ozon eingesetzt. Die Kenntnis der Emissionsraten iodhaltiger Verbindungen der wichtigsten weltweit vorkommenden Makroalgen ist für die Modellierung der Iodchemie in der marinen Grenzschicht von besonderer Bedeutung. Die Resultate zeigen, dass verschiedene Makroalgen sowohl unterschiedliche zeitlich aufgelöste I2-Emissionsprofile als auch Gesamtemissionsraten liefern. Im Vergleich zu den iodorganischen Verbindungen ist die Gesamtemissionsrate an I2 allerdings eine bis zwei Größenordnungen größer. Dies und die deutlich kürzere atmosphärische Lebensdauer von I2 im Vergleich zu den iodorganischen Verbindungen führen dazu, dass I2 die dominierende iodhaltige Verbindung für die Bildung reaktiver Iodatome in der marinen Grenzschicht ist. rnDa über dem tropischen Atlantischen Ozean bislang jedoch nur ein geringer Anteil der IO-Konzentration durch die Oxidation von iodorganischen Verbindungen erklärt werden kann, wurden weitere Quellen für I2 erforscht. Deshalb wurden Kammerexperimente mit Mikrolagen durchgeführt, um deren Einfluss auf die I2-Freisetzung in die Atmosphäre zu untersuchen. Hierbei konnte gezeigt werden, dass die Anwesenheit von Mikroalgen (z.B. Coscinodiscus Wailesii) im Meerwasser zu einer erhöhten Freisetzung von I2 aus dem Meerwasser in die Atmosphäre führen kann. rnDes Weiteren wurden auch Versuche zu abiotischen Bildungswegen von I2 durchgeführt. Die Ergebnisse der Atmosphärensimulationsexperimente haben gezeigt, dass partikuläre Iodoxide durch organische Verbindungen zu I2 reduziert werden können, welches im Anschluss von der Partikelphase in die Gasphase übergehen kann und dort wieder für Gasphasenprozesse zur Verfügung steht.rn